The odometry benchmark consists of 22 stereo sequences, saved in loss less png format: We provide 11 sequences (00-10) with ground truth trajectories for training and 11 sequences (11-21) without ground truth for evaluation. For this benchmark you may provide results using monocular or stereo visual odometry, laser-based SLAM or algorithms that combine visual and LIDAR information. The only restriction we impose is that your method is fully automatic (e.g., no manual loop-closure tagging is allowed) and that the same parameter set is used for all sequences. A development kit provides details about the data format.
- Download odometry development kit (1 MB)
- Lee Clement and his group (University of Toronto) have written some for loading and parsing the KITTI raw and odometry datasets
From all test sequences, our evaluation computes translational and rotational errors for all possible subsequences of length (100,...,800) meters. The evaluation table below ranks methods according to the average of those values, where errors are measured in percent (for translation) and in degrees per meter (for rotation). A more detailed comparison for different trajectory lengths and driving speeds can be found in the plots underneath. Note: On 03.10.2013 we have changed the evaluated sequence lengths from (5,10,50,100,...,400) to (100,200,...,800) due to the fact that the GPS/OXTS ground truth error for very small sub-sequences was large and hence biased the evaluation results. Now the averages below take into account longer sequences and provide a better indication of the true performance. Please consider reporting these number for all future submissions. The last leaderboard right before the changes can be found !
- Stereo: Method uses left and right (stereo) images
- Laser Points: Method uses point clouds from Velodyne laser scanner
- Loop Closure Detection: This method is a SLAM method that detects loop closures
- Additional training data: Use of additional data sources for training (see details)
Method | Setting | Code | Translation | Rotation | Runtime | Environment | ||
1 |
|
0.54 % | 0.0013 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Zhang and S. Singh: . IEEE International Conference on Robotics and Automation(ICRA) 2015. |
||||||||
2 |
|
0.55 % | 0.0013 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Zhang and S. Singh: . Robotics: Science and Systems Conference (RSS) 2014. |
||||||||
3 |
|
0.65 % | 0.0014 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
I. Cvi?i?, J. ?esi?, I. Markovi? and I. Petrovi?: . Journal of Field Robotics 2017. |
||||||||
4 |
|
0.69 % | 0.0018 [deg/m] | 1.25 s | 1 core @ >3.5 Ghz (C/C++) | |||
J. Deschaud: . 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018. |
||||||||
5 |
|
0.69 % | 0.0016 [deg/m] | 0.1 s | 4 cores @ 2.5 Ghz (C/C++) | |||
F. Neuhaus, T. Koss, R. Kohnen and D. Paulus: . German Conference on Pattern Recognition 2018. |
||||||||
6 |
|
0.70 % | 0.0016 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
7 |
|
0.80 % | 0.0026 [deg/m] | 0.08 s | 4 cores @ 3.0 Ghz (C/C++) | |||
8 | 0.81 % | 0.0025 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
9 |
|
0.82 % | 0.0020 [deg/m] | 0.2 s | 4 cores @ 2.5 Ghz (C/C++) | |||
K. Lenac, J. ?esi?, I. Markovi? and I. Petrovi?: . The International Journal of Robotics Research 2018. |
||||||||
10 |
|
0.83 % | 0.0026 [deg/m] | 0.25 s | 2 cores @ 2.0 Ghz (C/C++) | |||
M. Buczko and V. Willert: . 19th IEEE Intelligent Transportation Systems Conference (ITSC) 2016. M. Buczko, V. Willert, J. Schwehr and J. Adamy: . IEEE Intelligent Vehicles Symposium (IV) 2018. M. Buczko: . 2018. |
||||||||
11 |
|
0.84 % | 0.0022 [deg/m] | 0.2 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry. arXiv preprint arXiv:1807.07524 2018. |
||||||||
12 |
|
0.84 % | 0.0023 [deg/m] | 0.05 s | 4 cores @ 3.0 Ghz (C/C++) | |||
13 |
|
0.86 % | 0.0025 [deg/m] | 2 s | 8 cores @ 3.5 Ghz (Python) | |||
D. Yin, Q. Zhang, J. Liu, X. Liang, Y. Wang, J. Maanp??, H. Ma, J. Hyypp? and R. Chen: . 2020. |
||||||||
14 |
|
0.86 % | 0.0031 [deg/m] | 0.09 s | 1 core @ >3.5 Ghz (C/C++) | |||
J. Zhu: . International Joint Conference on Artificial Intelligence, IJCAI 2017. |
||||||||
15 |
|
0.86 % | 0.0022 [deg/m] | 0.2 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry. arXiv preprint arXiv:1807.07524 2018. |
||||||||
16 |
|
0.87 % | 0.0025 [deg/m] | 0.03 s | 4 cores @ 2.5 Ghz (C/C++) | |||
K. Ji and T. Huiyan Chen: . IEEE Intelligent Vehicles Symposium (IV) 2018. |
||||||||
17 | 0.88 % | 0.0029 [deg/m] | 2 s | >8 cores @ >3.5 Ghz (Python) | ||||
18 |
|
0.88 % | 0.0022 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
I. Cvi?i? and I. Petrovi?: . European Conference on Mobile Robots (ECMR) 2015. |
||||||||
19 |
|
0.88 % | 0.0025 [deg/m] | 0.3 s | 2 cores @ 2.0 Ghz (C/C++) | |||
M. Buczko and V. Willert: . 19th IEEE Intelligent Transportation Systems Conference (ITSC) 2016. |
||||||||
20 | 0.88 % | 0.0021 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
N. Yang, L. Stumberg, R. Wang and D. Cremers: D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020. |
||||||||
21 |
|
0.89 % | 0.0030 [deg/m] | 0.2 s | 8 cores @ 3.5 Ghz (C/C++) | |||
H. Hong and B. Lee: Probabilistic normal distributions transform representation for accurate 3d point cloud registration. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017. |
||||||||
22 | 0.90 % | 0.0021 [deg/m] | 0.1 s | GPU @ 2.5 Ghz (C/C++) | ||||
N. Yang, R. Wang, J. Stueckler and D. Cremers: Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry. European Conference on Computer Vision (ECCV) 2018. |
||||||||
23 |
|
0.93 % | 0.0026 [deg/m] | 0.2 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry. ArXiv e-prints 2018. |
||||||||
24 |
|
0.93 % | 0.0020 [deg/m] | 0.1 s | 1 core @ 3.4 Ghz (C/C++) | |||
R. Wang, M. Schw\"orer and D. Cremers: . International Conference on Computer Vision (ICCV), Venice, Italy 2017. |
||||||||
25 |
|
0.96 % | 0.0018 [deg/m] | 0.5 s | 1 core @ 3.0 Ghz (C/C++) | |||
26 |
|
0.98 % | 0.0028 [deg/m] | 0.3 s | 2 cores @ 2.0 Ghz (C/C++) | |||
M. Buczko and V. Willert: . IEEE Intelligent Vehicles Symposium (IV) 2016. |
||||||||
27 |
|
0.98 % | 0.0044 [deg/m] | 0.2 s | 2 core @ 3.0 Ghz (C/C++) | |||
28 |
|
0.98 % | 0.0026 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
29 |
|
1.00 % | 0.0041 [deg/m] | 0.1 s | 2 cores @ >3.5 Ghz (C/C++) | |||
30 | 1.01 % | 0.0025 [deg/m] | 1 s | >8 cores @ 2.5 Ghz (C/C++) | ||||
31 |
|
1.02 % | 0.0023 [deg/m] | 0.0095 s | AGX Jetson Xavier (0.03s Jetson Nano) | |||
32 | 1.02 % | 0.0040 [deg/m] | 0.1s | 1 core @ 2.8 Ghz (C/C++) | ||||
33 |
|
1.03 % | 0.0053 [deg/m] | 0.15 s | 1 core @ 2.5 Ghz (C/C++) | |||
34 |
|
1.06 % | 0.0034 [deg/m] | 0.1 s | 1 core @ 3.5 Ghz (C/C++) | |||
X. Chen, A. Milioto, E. Palazzolo, P. Gigu\`ere, J. Behley and C. Stachniss: . IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019. |
||||||||
35 |
|
1.06 % | 0.0033 [deg/m] | 0.15 s | 2 cores @ 2.0 Ghz (C/C++) | |||
36 |
|
1.09 % | 0.0029 [deg/m] | 0.145 s | GPU @ 3.5 Ghz (C/C++) | |||
M. Persson, T. Piccini, R. Mester and M. Felsberg: Robust Stereo Visual Odometry from Monocular Techniques. IEEE Intelligent Vehicles Symposium 2015. |
||||||||
37 |
|
1.09 % | 0.0033 [deg/m] | 0.1s | 1 core @ 3.0 Ghz (C/C++) | |||
T. Qin, J. Pan, S. Cao and S. Shen: . 2019. |
||||||||
38 |
|
1.10 % | 0.0023 [deg/m] | 0.08 s | 4 cores @ 2.3 Ghz (C/C++) | |||
39 |
|
1.11 % | 0.0028 [deg/m] | 1 s | 2 cores @ 2.0 Ghz (C/C++) | |||
M. Buczko and V. Willert: Monocular Outlier Detection for Visual Odometry. IEEE Intelligent Vehicles Symposium (IV) 2017. |
||||||||
40 | 1.12 % | 0.0029 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
41 |
|
1.14 % | 0.0049 [deg/m] | 0.1 s | 2 cores @ 2.5 Ghz (C/C++) | |||
J. Zhang, M. Kaess and S. Singh: Real-time Depth Enhanced Monocular Odometry. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2014. |
||||||||
42 |
|
1.15 % | 0.0027 [deg/m] | 0.06 s | 2 cores @ >3.5 Ghz (C/C++) | |||
R. Mur-Artal and J. Tard\'os: ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics 2017. |
||||||||
43 |
|
1.15 % | 0.0032 [deg/m] | 0.018 s | 1.5 cores @ 3.3 Ghz (C/C++) | |||
D. Slepichev, M. Smirnov, E. Vendrovsky and S. Volodarskiy: . . |
||||||||
44 |
|
1.17 % | 0.0035 [deg/m] | 0.45 s | 1 core @ 3.0 Ghz (C/C++) | |||
J. Deigmoeller and J. Eggert: . German Conference on Pattern Recognition (GCPR) 2016. |
||||||||
45 | 1.18 % | 0.0022 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
46 |
|
1.19 % | 0.0025 [deg/m] | 0.03 s | 4 cores @ 3.0 Ghz (C/C++) | |||
T. Pire, T. Fischer, G. Castro, P. De Crist\'oforis, J. Civera and J. Jacobo Berlles: . Robotics and Autonomous Systems (RAS) 2017. T. Pire, T. Fischer, J. Civera, P. Crist\'{o}foris and J. Jacobo-Berlles: . IROS 2015. |
||||||||
47 |
|
1.20 % | 0.0033 [deg/m] | 0.07 s | 1 core @ 3.5 Ghz (C/C++) | |||
J. Engel, J. St\"uckler and D. Cremers: . Int.~Conf.~on Intelligent Robot Systems (IROS) 2015. |
||||||||
48 |
|
1.22 % | 0.0029 [deg/m] | 0.1 s | 1 core @ 2.0 Ghz (C/C++) | |||
J. Tardif, M. George, M. Laverne, A. Kelly and A. Stentz: . 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan 2010. |
||||||||
49 |
|
1.22 % | 0.0058 [deg/m] | 0.2 s | 1 core @ 2.5 Ghz (C/C++) | |||
T. Tang, D. Yoon and T. Barfoot: . arXiv preprint arXiv:1809.06518 2018. |
||||||||
50 |
|
1.22 % | 0.0042 [deg/m] | 0.5 s | 1 core @ 2.5 Ghz (C/C++) | |||
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry. ArXiv e-prints 2018. |
||||||||
51 |
|
1.25 % | 0.0041 [deg/m] | 0.17 s | 4 cores @ 3.3 Ghz (C/C++) | |||
X. Qu, B. Soheilian and N. Paparoditis: . ISPRS Journal of Photogrammetry and Remote Sensing 2017. |
||||||||
52 |
|
1.26 % | 0.0061 [deg/m] | 0.2 s | 1 core @ 2.5 Ghz (C/C++) | |||
T. Tang, D. Yoon, F. Pomerleau and T. Barfoot: . 15th Conference on Computer and Robot Vision (CRV) 2018. |
||||||||
53 |
|
1.26 % | 0.0038 [deg/m] | 0.03 s | 1 core @ 3.5 Ghz (C/C++) | |||
W. Meiqing, L. Siew-Kei and S. Thambipillai: . IEEE Transaction on Intelligent Transportation Systems 2017. |
||||||||
54 |
|
1.26 % | 0.0034 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | |||
55 |
|
1.28 % | 0.0010 [deg/m] | 0.1 s | 1 core @ 3.4 Ghz (C/C++) | |||
56 | 1.28 % | 0.0022 [deg/m] | 0.2 s | 2 cores @ 2.5 Ghz (C/C++) | ||||
57 | 1.28 % | 0.0040 [deg/m] | 0.07 s | 1 core @ 2.5 Ghz (C/C++) | ||||
58 |
|
1.30 % | 0.0030 [deg/m] | 0.1 s | 1 core @ 2.2 Ghz (C/C++) | |||
H. Badino, A. Yamamoto and T. Kanade: . First International Workshop on Computer Vision for Autonomous Driving at ICCV 2013. |
||||||||
59 | 1.31 % | 0.0023 [deg/m] | 0.03 s | 4 cores @ 2.5 Ghz (C/C++) | ||||
60 | 1.36 % | 0.0041 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
61 |
|
1.36 % | 0.0038 [deg/m] | 0.1 s | 1 Core @2.8GHz (C/C++) | |||
W. Lu, Z. Xiang and J. Liu: High-performance visual odometry with two- stage local binocular BA and GPU. Intelligent Vehicles Symposium (IV), 2013 IEEE 2013. |
||||||||
62 |
|
1.37 % | 0.0035 [deg/m] | 0.1 s | 1 core @ 3.0 Ghz (C/C++) | |||
I. Kre?o and S. ?egvi?: . VISAPP 2015. |
||||||||
63 |
|
1.37 % | 0.0051 [deg/m] | 0.6 s | 1 core @ 2.5 Ghz (C/C++) | |||
D. Kovalenko, M. Korobkin and A. Minin: . 2019 European Conference on Mobile Robots (ECMR) 2019. |
||||||||
64 |
|
1.39 % | 0.0034 [deg/m] | 0.1 s | 1 core @ 3.5 Ghz (C/C++) | |||
J. Behley and C. Stachniss: . Robotics: Science and Systems (RSS) 2018. |
||||||||
65 |
|
1.39 % | 0.0035 [deg/m] | 0.02 s | 1 core @ 3.0 Ghz (C/C++) | |||
D. Schlegel, M. Colosi and G. Grisetti: . ArXiv e-prints 2017. |
||||||||
66 |
|
1.43 % | 0.0038 [deg/m] | 0.05 s | 1 core @ 3.4 Ghz (C/C++) | |||
R. Sardana, R. Kottath, V. Karar and S. Poddar: . Proceedings of the Advances in Robotics 2019 2019. |
||||||||
67 |
|
1.51 % | 0.0042 [deg/m] | 0.02 s | 2 cores @ 2.5 Ghz (C/C++) | |||
H. Badino and T. Kanade: . IAPR Conference on Machine Vision Application 2011. |
||||||||
68 | 1.51 % | 0.0070 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
69 | 1.57 % | 0.0050 [deg/m] | 0.05 s | 1 core @ 2.5 Ghz (C/C++) | ||||
70 |
|
1.57 % | 0.0044 [deg/m] | 0.5 s | 8 cores @ 3.5 Ghz (C/C++) | |||
F. Bellavia, M. Fanfani, F. Pazzaglia and C. Colombo: . ICIAP 2013 2013. F. Bellavia, M. Fanfani and C. Colombo: Selective visual odometry for accurate AUV localization. Autonomous Robots 2015. M. Fanfani, F. Bellavia and C. Colombo: Accurate Keyframe Selection and Keypoint Tracking for Robust Visual Odometry. Machine Vision and Applications 2016. |
||||||||
71 |
|
1.59 % | 0.0053 [deg/m] | 0.08 s | 8 core @ 3.4 Ghz (C/C++) | |||
72 | 1.65 % | 0.0050 [deg/m] | 0.1 s | GPU | ||||
73 | 1.70 % | 0.0028 [deg/m] | 0.01 s | 1 core @ 2.5 Ghz (C/C++) | ||||
74 | 1.72 % | 0.0054 [deg/m] | 0.1 s | test | ||||
75 | 1.74 % | 0.0030 [deg/m] | 0.01 s | 1 core @ 2.5 Ghz (C/C++) | ||||
76 | 1.74 % | 0.0030 [deg/m] | 0.01 s | 1 core @ 2.5 Ghz (C/C++) | ||||
77 | 1.75 % | 0.0056 [deg/m] | 1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
78 |
|
1.76 % | 0.0036 [deg/m] | 0.05 s | 2 cores @ 2.0 Ghz (C/C++) | |||
M. Sanfourche, V. Vittori and G. Besnerais: . IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013. |
||||||||
79 |
|
1.76 % | 0.0026 [deg/m] | 0.1 s | 4 cores @ 2.5 Ghz (C/C++) | |||
J. Huai, C. Toth and D. Grejner-Brzezinska: . Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015) 2015. |
||||||||
80 | 1.76 % | 0.0036 [deg/m] | 0.1 s | 1 core @ 2.5GHz (Python) | ||||
F. Pereira, J. Luft, G. Ilha, A. Sofiatti and A. Susin: . 2017 Workshop of Computer Vision (WVC) 2017. |
||||||||
81 | 1.89 % | 0.0083 [deg/m] | 0.02 s | 1 core @ 2.5 Ghz (C/C++) | ||||
M. Dimitrievski., D. Hamme., P. Veelaert. and W. Philips.: Robust Matching of Occupancy Maps for Odometry in Autonomous Vehicles. Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) 2016. |
||||||||
82 |
|
2.04 % | 0.0051 [deg/m] | 0.03 s | 1 core @ 2.5 Ghz (C/C++) | |||
A. Comport, E. Malis and P. Rives: Accurate Quadrifocal Tracking for Robust 3D Visual Odometry. ICRA 2007. M. Meilland, A. Comport and P. Rives: . ICRA 2011. |
||||||||
83 | 2.05 % | 0.0051 [deg/m] | 1 s | 1 core @ 2.5 Ghz (Python + C/C++) | ||||
N. Fanani, A. Stuerck, M. Ochs, H. Bradler and R. Mester: Predictive monocular odometry (PMO): What is possible without RANSAC and multiframe bundle adjustment?. Image and Vision Computing 2017. |
||||||||
84 | 2.12 % | 0.0056 [deg/m] | 0.03 s | 2 cores @ 1.5 Ghz (C/C++) | ||||
Y. Zhao and P. Vela: Good Feature Matching: Towards Accurate, Robust VO/VSLAM with Low Latency. submitted to IEEE Transactions on Robotics 2019. |
||||||||
85 |
|
2.14 % | 0.0059 [deg/m] | 0.5 s | 8 cores @ 3.5 Ghz (C/C++) | |||
F. Bellavia, M. Fanfani, F. Pazzaglia and C. Colombo: . ICIAP 2013 2013. F. Bellavia, M. Fanfani and C. Colombo: Selective visual odometry for accurate AUV localization. Autonomous Robots 2015. M. Fanfani, F. Bellavia and C. Colombo: Accurate Keyframe Selection and Keypoint Tracking for Robust Visual Odometry. Machine Vision and Applications 2016. |
||||||||
86 | 2.24 % | 0.0049 [deg/m] | 0.11 s | 1 core @ 2.5 Ghz (C/C++) | ||||
H. Mirabdollah and B. Mertsching: Fast Techniques for Monocular Visual Odometry . Proceeding of 37th German Conference on Pattern Recognition (GCPR) 2015 . |
||||||||
87 | 2.38 % | 0.0053 [deg/m] | 1 s | 1 core @ 2.5 Ghz (Python + C/C++) | ||||
N. Fanani, M. Ochs, H. Bradler and R. Mester: . Intelligent Vehicles Symposium (IV) 2016. N. Fanani, A. Stuerck, M. Barnada and R. Mester: Multimodal scale estimation for monocular visual odometry. Intelligent Vehicles Symposium (IV) 2017. |
||||||||
88 |
|
2.44 % | 0.0114 [deg/m] | 0.05 s | 1 core @ 2.5 Ghz (C/C++) | |||
A. Geiger, J. Ziegler and C. Stiller: . IV 2011. |
||||||||
89 | 2.54 % | 0.0057 [deg/m] | 0.03 s | 5 cores @ 2.5 Ghz (C/C++) | ||||
S. Song and M. Chandraker: Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving. CVPR 2014. S. Song, M. Chandraker and C. Guest: Parallel, Real-time Monocular Visual Odometry. ICRA 2013. |
||||||||
90 |
|
2.54 % | 0.0078 [deg/m] | 1.26 s | 1 core @ 2.5 Ghz (C/C++) | |||
C. Beall, B. Lawrence, V. Ila and F. Dellaert: . IROS 2010. |
||||||||
91 | 2.54 % | 0.0089 [deg/m] | 0.1 s | GPU @ 2.0 Ghz (C/C++) | ||||
92 | 2.55 % | 0.0086 [deg/m] | 0.39 s | 1 core @ 2.5 Ghz (C/C++) | ||||
M. Mirabdollah and B. Mertsching: . Proceeding of 36th German Conference on Pattern Recognition 2014. |
||||||||
93 |
|
2.69 % | 0.0068 [deg/m] | 0.56 s | 1 core @ 2.0 Ghz (C/C++) | |||
P. Alcantarilla: . 2011. P. Alcantarilla, J. Yebes, J. Almazán and L. Bergasa: . ICRA 2012. |
||||||||
94 |
|
2.86 % | 0.0044 [deg/m] | 0.1 s | 1 core @ 3.0 Ghz (C/C++) | |||
N. Dias and G. Laureano: Accurate Stereo Visual Odometry Based on Keypoint Selection. 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE) 2019. |
||||||||
95 |
|
2.94 % | 0.0077 [deg/m] | 0.06 s | 1 core @ 2.5 Ghz (C/C++) | |||
B. Kitt, A. Geiger and H. Lategahn: . IV 2010. |
||||||||
96 | 3.02 % | 0.0132 [deg/m] | 0.2 s | 1 core @ 2.5 Ghz (C/C++) | ||||
97 |
|
3.13 % | 0.0104 [deg/m] | 0.57 s | 1 core @ 2.0 Ghz (C/C++) | |||
P. Alcantarilla: . 2011. P. Alcantarilla, J. Yebes, J. Almazán and L. Bergasa: . ICRA 2012. |
||||||||
98 |
|
3.26 % | 0.0095 [deg/m] | 0.20 s | 2 cores @ 2.5 Ghz (C/C++) | |||
R. Gomez-Ojeda and J. Gonzalez- Jimenez: . Robotics and Automation (ICRA), 2016 IEEE International Conference on 2016. |
||||||||
99 | 3.45 % | 0.0144 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
100 | 3.49 % | 0.0128 [deg/m] | 0.7 s | 1 core @ 2.5 Ghz (C/C++) | ||||
M. Velas, M. Spanel, M. Hradis and A. Herout: . ArXiv e-prints 2017. |
||||||||
101 |
|
3.73 % | 0.0107 [deg/m] | 0.9 s | 8 cores @ 3.0 Ghz (C/C++) | |||
D. Mankowitz and E. Rivlin: CFORB: Circular FREAK-ORB Visual Odometry. arXiv preprint arXiv:1506.05257 2015. |
||||||||
102 |
|
3.94 % | 0.0099 [deg/m] | 0.51 s | 1 core @ 2.0 Ghz (C/C++) | |||
M. Kaess, K. Ni and F. Dellaert: . ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: . ICRA 2010. |
||||||||
103 | 4.03 % | 0.0096 [deg/m] | 1 s | 1 core @ 2.5 Ghz (Python) | ||||
104 |
|
4.17 % | 0.0112 [deg/m] | 0.52 s | 1 core @ 2.0 Ghz (C/C++) | |||
M. Kaess, K. Ni and F. Dellaert: . ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: . ICRA 2010. |
||||||||
105 |
|
4.19 % | 0.0087 [deg/m] | 0.05 s | GPU @ 1.0 Ghz (Python + C/C++) | |||
106 | 4.36 % | 0.0052 [deg/m] | .001 s | GPU @ 2.5 Ghz (Matlab) | ||||
A. Aguilar-González, M. Arias- Estrada, F. Berry and J. Osuna-Couti?o: . Microprocessors and Microsystems 2019. |
||||||||
107 | 4.59 % | 0.0175 [deg/m] | 1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
M. Velas, M. Spanel, M. Hradis and A. Herout: . ArXiv e-prints 2017. |
||||||||
108 | 5.45 % | 0.0274 [deg/m] | 1 s | 1 core @ 2.5 Ghz (Matlab) | ||||
Z. Boukhers, K. Shirahama and M. Grzegorzek: . Circuits and Systems for Videos Technology (TCSVT), IEEE Transaction on 2017. Z. Boukhers, K. Shirahama and M. Grzegorzek: Less restrictive camera odometry estimation from monocular camera. Multimedia Tools and Applications 2017. |
||||||||
109 | 6.24 % | 0.0097 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
110 | 6.42 % | 0.0109 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (Python + C/C++) | ||||
111 | 7.10 % | 0.0215 [deg/m] | 0.15 s | GPU @ 2.5 Ghz (Python) | ||||
112 | 7.40 % | 0.0142 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
113 | 7.46 % | 0.0245 [deg/m] | 0.15 s | 1 core @ 2.5 Ghz (C/C++) | ||||
A. Geiger, J. Ziegler and C. Stiller: . IV 2011. S. Song and M. Chandraker: Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving. CVPR 2014. |
||||||||
114 | 9.21 % | 0.0163 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
M. Velas, M. Spanel, M. Hradis and A. Herout: . ArXiv e-prints 2017. |
||||||||
115 | 11.79 % | 0.0069 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
116 | 11.94 % | 0.0234 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
A. Geiger, J. Ziegler and C. Stiller: . IV 2011. |
||||||||
117 | 12.59 % | 0.0312 [deg/m] | 1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
118 | 13.25 % | 0.0097 [deg/m] | 0.03 s | GPU @ 2.5 Ghz (Python) | ||||
I. Slinko, A. Vorontsova, F. Konokhov, O. Barinova and A. Konushin: . 2019. |
||||||||
119 | 13.69 % | 0.0355 [deg/m] | 0.01 s | 1 core @ 2.5 Ghz (C/C++) | ||||
120 | 16.06 % | 0.0320 [deg/m] | 0.1 s | 1 core @ 2.5 Ghz (C/C++) | ||||
121 | 20.95 % | 0.0135 [deg/m] | 0.5 s | 1 core @ 3.5 Ghz (C/C++) | ||||
D. Frost, O. K?hler and D. Murray: Object-Aware Bundle Adjustment for Correcting Monocular Scale Drift. Proceedings of the International Conference on Robotics and Automation (ICRA) 2012. |
||||||||
122 | 21.47 % | 0.0425 [deg/m] | 0.01 s | 1 core @ 2.5 Ghz (C/C++) | ||||