偷得浮生半桶水(半日闲), 好记性不如抄下来(烂笔头). 信息爆炸的时代, 学习是一项持续的工作.
全部博文(1751)
分类: 其他平台
2020-04-22 11:17:53
而对于立体视觉,如双目视觉,其固定基线在三角测量:是一个很好的优势。已知基线便可进行视差图的精确计算,能进行快速密集的三维三角测量,而且还解决了单目视景中白尺度二义性。立体视觉通过固定和已知的基线能提供深目信息,但当物体距离远大于基线时,立体视觉也近似于单目视觉,所以立体视觉有一个景深信息获取范围。
ORB-SLAM 优缺点
优点:
缺点:
现有研究中实用性最好的基于特征的 VO 方法是 ORB-SLAM2,它提出了一个更为完整的 VO 框架。ORB-SLAM2 在 ORB-SLAM 的基础上,还支持标定后的双目相机和 RGB-D 相机。双目对于精度和鲁棒性都会有一定的提升。ORB-SLAM2 是基于单目,双目和 RGB-D 相机的一套完整的 SLAM 方案。它能够实现地图重用,回环检测和重新定位的功能。无论是在室内的小型手持设备,还是到工厂环境的无人机和城市里驾驶的汽车,ORB-SLAM2 都能够在标准的 CPU 上进行实时工作。ORB-SLAM2 在后端上采用的是基于单目和双目的光束法平差优化(BA)的方式,这个方法允许米制比例尺的轨迹精确度评估。此外,ORB-SLAM2 包含一个轻量级的定位模式,该模式能够在允许零点漂移的条件下,利用视觉里程计来追踪未建图的区域并且匹配特征点。
多传感器融合-视觉惯导里程计(VIO)
VINS
VINS-Mono 是基于单目视觉惯性系统的实时 SLAM 框架, 是目前非常先进的单目 VIO 算法,更是视觉与 IMU 的融合中的经典之作,其定位精度可以媲美 OKVIS,而且具有比 OKVIS 更加完善和鲁棒的初始化以及闭环检测过程,代码在 Linux 上运行,并与 ROS 完全集成。VINS-Mono 主要用于自主无人机的状态估计和反馈控制,但它也能够为 AR 应用提供精确的定位。VINS-Mobile 可以运行在 iOS 系统。
相机和 IMU 的天然互补性和智能手机的普及,使得视觉惯性里程计 VIO 近几年很流行,苹果的 ARKit 和谷歌的 ARCore 都是 VIO 的典型应用。VIO 为将来 SLAM 的小型化与低成本化提供了一个有效的方向,而且结合稀疏直接法,有望在低端硬件上取得良好的 SLAM 或 VO 效果,是非常有未来前景的。
在 VINS 相关应用案例的研究中,为了达到更好的精度效果,我们需要提前做好相机和 IMU 的标定,并且在选型相机时,要尽量选用双目和 IMU 硬件同步、同步精度较小的深度相机,这样可以避免少走很多弯路。