基于 sqlite 、 mysql的连接示例
python3 有自带的 sqlite3 模块以及 Sqlite3 数据库, 可以直接进行数据库程序设计。
对象连接方法
db.close()
db.commit()
db.cursor()
db.rollback()
游标对象的属性和方法
c --> cursor
c.arraysize : fetchmany()返回的行数
c.close(): 游标超出范围外时自动执行此操作
c.description: 一个7元组, 描述了每个相继的游标c组成的列。
c.execute(sql,params)执行查询
c.executemany(sql, seq_of_params)
seq_of_params为序列或者映射, 对其每一项执行sql (不适合select)
c.fetchall() 返回序列, 包括所有未取回的行
c.fetchmany(size) 返回一个行序列(每个行也是一个序列), size 默认 =
c.arraysize
c.fetchone(): 返回结果集的下一行, 或者 None, 没有结果集则为 异常。
c.rowcount: 最近一次操作影响的行数。
-
db = sqlite3.connect(filename)返回数据库对象病打开。
-
mycursor = db.cursor() 数据库操作通过游标完成
-
-
mycursor.execute("create table A ("
-
"id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,"
-
"name TEXT UNIQUE NOT NULL,"
-
"PID INTEGER NOT NULL,"
-
"FOREIGN KEY(PID) REFERENCES table_B)"
-
)
-
-
db.commit()
-
-
mycursor.execute("insert into A(name,PID)"
-
"values(?,?,?)", ("ray",386396)) 使用 ? 占位符, 后面必须为元组,注意一元组格式 (1,)
-
db.commit()
-
-
mycursor.execute("select * from A where name=?", ("ray",))
-
fields = mycursor.fetchone()
-
print(fields[0] if fields is not None else None)
-
-
或者用
-
mycursor.execute("select id,name,pid from A where name=:name", dict(name="ray",))
-
cid,cname,cpid = mycursor.fetchone()
-
-
db.close()
对于复杂一点的mysql, 附上以前的一个代码
-
# coding=UTF-8
-
-
import cv2
-
import numpy as np
-
from feature_get import FaceVgg
-
from similarity import cosine_similarity
-
import sys
-
from imp import reload
-
from struct import pack, unpack
-
from main import get_run_flags, set_run_flags
-
from queue import Queue
-
import time
-
import datetime
-
import threading
-
import udp_server
-
-
'''
-
map class to table of mysql
-
'''
-
-
from sqlalchemy import create_engine
-
from sqlalchemy import Column, String, Integer, BLOB
-
from sqlalchemy.orm import sessionmaker
-
from sqlalchemy.ext.declarative import declarative_base
-
-
-
engine = create_engine("mysql+pymysql://ray:hattie@localhost:3306/db_faces", max_overflow=5)
-
Base = declarative_base()
-
DBSession = sessionmaker(bind=engine)
-
session = DBSession()
-
-
class FaceItem(Base):
-
__tablename__ = 'tblFaces'
-
fPersonID = Column(Integer, primary_key=True, autoincrement=True)
-
fGroup = Column(Integer, nullable=False)
-
fPersonName = Column(String(32), nullable=False)
-
bFeature = Column(BLOB, nullable=False)
-
bImage = Column(BLOB, nullable=False)
-
-
queue_face_request_item = Queue(10)
-
def new_face_request_item(client_addr, requst_type, img, group, names, fSeq):
-
global queue_face_request_item
-
item = [client_addr, requst_type, img, group, names, fSeq]
-
#queue_face_request_item.put(item)
-
queue_face_request_item.put_nowait(item)
-
-
-
def face_feature_exec(params):
-
global queue_face_request_item
-
print (params)
-
face_vgg_net = FaceVgg() # load caffe engine
-
faceset = session.query(FaceItem).all() #load current dataset
-
-
while not get_run_flags(): #not bTerminated:
-
# get image from list, proc it , then send message back.
-
try:
-
item = queue_face_request_item.get()
-
#-------------------------------------------------------------------------------------------------------------------------
-
if item[1] == udp_server.CMD_FACE_REQ:
-
print("Face Recognize.")
-
extract_start = datetime.datetime.now().microsecond
-
feat_blob = face_vgg_net.extract_face_feat(item[2])
-
extract_end = datetime.datetime.now().microsecond
-
print(["### extract", extract_start - extract_end])
-
-
max_score = 0.0
-
row_idx = faceset[0]
-
for row in faceset:
-
feat_list = []
-
fFeat = row.bFeature
-
i = 0
-
while i<4096 :
-
tmp = fFeat[i*4:i*4+4]
-
f_val = unpack('f', tmp)[0]
-
feat_list.append(f_val)
-
i = i+1
-
-
feat_db = np.array(feat_list)
-
extract_start = datetime.datetime.now().microsecond
-
similarity = cosine_similarity(feat_blob, feat_db)
-
extract_end = datetime.datetime.now().microsecond
-
if similarity>max_score:
-
print(["### compare", extract_start-extract_end])
-
max_score = similarity
-
row_idx = row
-
-
if max_score > 0.60:
-
print( "best score is %f" % max_score )
-
udp_server.sendback_recognized_ok(item[0], item[5], row_idx.fGroup, row_idx.fPersonID, row_idx.fPersonName, max_score)
-
-
-
#-------------------------------------------------------------------------------------------------------------------------
-
elif item[1] == udp_server.CMD_REGISTER:
-
print("Face Register.")
-
feat_blob = face_vgg_net.extract_face_feat(item[2])
-
-
img_encode = cv2.imencode('.jpg', item[2])[1]
-
data_img_encode = np.array(img_encode)
-
img_blob = data_img_encode.tostring()
-
-
row_item = FaceItem(fGroup=item[3], fPersonName=item[4], bFeature=feat_blob, bImage=img_blob)
-
session.add(row_item)
-
session.commit()
-
#print(row_item.fPersonID)
-
-
faceset = session.query(FaceItem).all() #load current dataset
-
#print(len(faceset))
-
-
#send OK to client. 0->clientaddr, 5->fseq
-
udp_server.sendback_regist_ok(item[0], item[5])
-
-
print("OK")
-
-
except:
-
sleep(0.01)
-
-
-
set_run_flags(False)
-
-
# --------------------------------------------------------------------------------------------------
-
def main_thread():
-
threads = [] # list
-
thr_face_server = threading.Thread(target=face_feature_exec, args=(u'FaceReco 服务监听',))
-
threads.append(thr_face_server)
-
-
for t in threads:
-
t.setDaemon(True)
-
t.start()
-
-
for t in threads:
-
t.join()
-
-
print("Thread Face is Over.\n")
-
-
'''
-
循环遍历列表
-
'''
-
def main_1():
-
faceset = session.query(FaceItem).all()
-
-
fFeat = faceset[0].bFeature
-
#每四個字節爲一个float类型
-
print(fFeat)
-
print(len(fFeat))
-
i = 0
-
feat_list = []
-
while i<4096 :
-
tmp = fFeat[i*4:i*4+4]
-
f_val = unpack('f', tmp)[0]
-
feat_list.append(f_val)
-
i = i+1
-
-
feat_1 = np.array(feat_list)
-
print(feat_1)
-
print(type(feat_1))
-
-
fImage = faceset[0].bImage
-
img_encode = np.fromstring(fImage, np.uint8)
-
img_decode = cv2.imdecode(img_encode, 1)
-
cv2.imshow('face', img_decode)
-
cv2.waitKey()
-
-
'''
-
add one record.
-
'''
-
def main_2():
-
face_vgg_net = FaceVgg()
-
-
img_1 = cv2.imread('img/0_2.jpg')
-
feat_1 = face_vgg_net.extract_face_feat(img_1)
-
print(feat_1)
-
print(type(feat_1))
-
-
-
img_encode = cv2.imencode('.jpg', img_1)[1]
-
data_img_encode = np.array(img_encode)
-
str_img = data_img_encode.tostring()
-
-
session.query(FaceItem).delete()
-
session.commit()
-
-
item = FaceItem(fGroup=0, fPersonName='0_2', bFeature=feat_1, bImage=str_img)
-
session.add(item)
-
session.commit()
-
print("OK")
-
-
-
if __name__ == '__main__':
-
reload(sys)
-
#main_2()
-
#main_1()
-
main_thread()
阅读(1963) | 评论(0) | 转发(0) |