https://wenku.baidu.com/view/8401d0e359eef8c75ebfb367.html
https://github.com/Hydr0Dr4gon/MPU9250-on-Teensy-LC/tree/master/Teensy_Tracker_Sketch
-
/* Dragon Labs VR Headset Tracker
-
by: Mark Hodgkinson
-
date: 20 September 2017
-
license: MIT Licence
-
Derived heavily from Kris Winer's example code for the MPU9250 and infinitellamas's code for an
-
Arduino Tracker for OSVR. Many thanks to both of them for making their code public and doing
-
most of the heavy lifting.
-
This is the Teensy code for the Dragon Labs VR Headset
-
Hardware:
-
Teensy LC
-
InvenSense MPU9250 on Sparkfun breakout
-
*/
-
-
#include <i2c_t3.h>
-
-
-
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
-
// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
-
//
-
//Magnetometer Registers
-
#define AK8963_ADDRESS 0x0C
-
#define AK8963_WHO_AM_I 0x00 // should return 0x48
-
#define AK8963_INFO 0x01
-
#define AK8963_ST1 0x02 // data ready status bit 0
-
#define AK8963_XOUT_L 0x03 // data
-
#define AK8963_XOUT_H 0x04
-
#define AK8963_YOUT_L 0x05
-
#define AK8963_YOUT_H 0x06
-
#define AK8963_ZOUT_L 0x07
-
#define AK8963_ZOUT_H 0x08
-
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
-
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
-
#define AK8963_ASTC 0x0C // Self test control
-
#define AK8963_I2CDIS 0x0F // I2C disable
-
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
-
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
-
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
-
-
#define SELF_TEST_X_GYRO 0x00
-
#define SELF_TEST_Y_GYRO 0x01
-
#define SELF_TEST_Z_GYRO 0x02
-
-
#define SELF_TEST_X_ACCEL 0x0D
-
#define SELF_TEST_Y_ACCEL 0x0E
-
#define SELF_TEST_Z_ACCEL 0x0F
-
-
#define SELF_TEST_A 0x10
-
-
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
-
#define XG_OFFSET_L 0x14
-
#define YG_OFFSET_H 0x15
-
#define YG_OFFSET_L 0x16
-
#define ZG_OFFSET_H 0x17
-
#define ZG_OFFSET_L 0x18
-
#define SMPLRT_DIV 0x19
-
#define CONFIG 0x1A
-
#define GYRO_CONFIG 0x1B
-
#define ACCEL_CONFIG 0x1C
-
#define ACCEL_CONFIG2 0x1D
-
#define LP_ACCEL_ODR 0x1E
-
#define WOM_THR 0x1F
-
-
#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
-
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
-
#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
-
-
#define FIFO_EN 0x23
-
#define I2C_MST_CTRL 0x24
-
#define I2C_SLV0_ADDR 0x25
-
#define I2C_SLV0_REG 0x26
-
#define I2C_SLV0_CTRL 0x27
-
#define I2C_SLV1_ADDR 0x28
-
#define I2C_SLV1_REG 0x29
-
#define I2C_SLV1_CTRL 0x2A
-
#define I2C_SLV2_ADDR 0x2B
-
#define I2C_SLV2_REG 0x2C
-
#define I2C_SLV2_CTRL 0x2D
-
#define I2C_SLV3_ADDR 0x2E
-
#define I2C_SLV3_REG 0x2F
-
#define I2C_SLV3_CTRL 0x30
-
#define I2C_SLV4_ADDR 0x31
-
#define I2C_SLV4_REG 0x32
-
#define I2C_SLV4_DO 0x33
-
#define I2C_SLV4_CTRL 0x34
-
#define I2C_SLV4_DI 0x35
-
#define I2C_MST_STATUS 0x36
-
#define INT_PIN_CFG 0x37
-
#define INT_ENABLE 0x38
-
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
-
#define INT_STATUS 0x3A
-
#define ACCEL_XOUT_H 0x3B
-
#define ACCEL_XOUT_L 0x3C
-
#define ACCEL_YOUT_H 0x3D
-
#define ACCEL_YOUT_L 0x3E
-
#define ACCEL_ZOUT_H 0x3F
-
#define ACCEL_ZOUT_L 0x40
-
#define TEMP_OUT_H 0x41
-
#define TEMP_OUT_L 0x42
-
#define GYRO_XOUT_H 0x43
-
#define GYRO_XOUT_L 0x44
-
#define GYRO_YOUT_H 0x45
-
#define GYRO_YOUT_L 0x46
-
#define GYRO_ZOUT_H 0x47
-
#define GYRO_ZOUT_L 0x48
-
#define EXT_SENS_DATA_00 0x49
-
#define EXT_SENS_DATA_01 0x4A
-
#define EXT_SENS_DATA_02 0x4B
-
#define EXT_SENS_DATA_03 0x4C
-
#define EXT_SENS_DATA_04 0x4D
-
#define EXT_SENS_DATA_05 0x4E
-
#define EXT_SENS_DATA_06 0x4F
-
#define EXT_SENS_DATA_07 0x50
-
#define EXT_SENS_DATA_08 0x51
-
#define EXT_SENS_DATA_09 0x52
-
#define EXT_SENS_DATA_10 0x53
-
#define EXT_SENS_DATA_11 0x54
-
#define EXT_SENS_DATA_12 0x55
-
#define EXT_SENS_DATA_13 0x56
-
#define EXT_SENS_DATA_14 0x57
-
#define EXT_SENS_DATA_15 0x58
-
#define EXT_SENS_DATA_16 0x59
-
#define EXT_SENS_DATA_17 0x5A
-
#define EXT_SENS_DATA_18 0x5B
-
#define EXT_SENS_DATA_19 0x5C
-
#define EXT_SENS_DATA_20 0x5D
-
#define EXT_SENS_DATA_21 0x5E
-
#define EXT_SENS_DATA_22 0x5F
-
#define EXT_SENS_DATA_23 0x60
-
#define MOT_DETECT_STATUS 0x61
-
#define I2C_SLV0_DO 0x63
-
#define I2C_SLV1_DO 0x64
-
#define I2C_SLV2_DO 0x65
-
#define I2C_SLV3_DO 0x66
-
#define I2C_MST_DELAY_CTRL 0x67
-
#define SIGNAL_PATH_RESET 0x68
-
#define MOT_DETECT_CTRL 0x69
-
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
-
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
-
#define PWR_MGMT_2 0x6C
-
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
-
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
-
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
-
#define DMP_REG_1 0x70
-
#define DMP_REG_2 0x71
-
#define FIFO_COUNTH 0x72
-
#define FIFO_COUNTL 0x73
-
#define FIFO_R_W 0x74
-
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
-
#define XA_OFFSET_H 0x77
-
#define XA_OFFSET_L 0x78
-
#define YA_OFFSET_H 0x7A
-
#define YA_OFFSET_L 0x7B
-
#define ZA_OFFSET_H 0x7D
-
#define ZA_OFFSET_L 0x7E
-
-
// Using the MSENSR-9250 breakout board, ADO is set to 0
-
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
-
//#define ADO 0
-
#if ADO
-
#define MPU9250_ADDRESS 0x69 // Device address when ADO = 1
-
#else
-
#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0
-
#define AK8963_ADDRESS 0x0C // Address of magnetometer
-
#endif
-
-
// Set initial input parameters
-
enum Ascale {
-
AFS_2G = 0,
-
AFS_4G,
-
AFS_8G,
-
AFS_16G
-
};
-
-
enum Gscale {
-
GFS_250DPS = 0,
-
GFS_500DPS,
-
GFS_1000DPS,
-
GFS_2000DPS
-
};
-
-
enum Mscale {
-
MFS_14BITS = 0, // 0.6 mG per LSB
-
MFS_16BITS // 0.15 mG per LSB
-
};
-
-
// Specify sensor full scale
-
uint8_t Gscale = GFS_250DPS;
-
uint8_t Ascale = AFS_2G;
-
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution
-
uint8_t Mmode = 0x02; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
-
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
-
-
//// Pin definitions
-
//int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
-
//int adoPin = 8;
-
//int LEDPin = 13;
-
-
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
-
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
-
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
-
float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
-
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
-
int16_t tempCount; // temperature raw count output
-
float temperature; // Stores the real internal chip temperature in degrees Celsius
-
float SelfTest[6]; // holds results of gyro and accelerometer self test
-
-
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
-
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
-
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
-
-
// There is a tradeoff in the beta parameter between accuracy and response speed.
-
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
-
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
-
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot
-
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
-
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
-
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
-
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
-
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
-
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
-
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
-
#define Ki 0.0f
-
-
uint32_t delt_t = 0; // used to control display output rate
-
uint32_t count = 0, sumCount = 0; // used to control display output rate
-
//float pitch, yaw, roll;
-
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
-
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
-
uint32_t Now = 0; // used to calculate integration interval
-
-
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
-
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
-
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
-
-
-
void setup()
-
{
-
// Setup for Master mode, pins 18/19, external pullups, 400kHz
-
Wire1.begin(I2C_MASTER, 0x68, I2C_PINS_22_23, I2C_PULLUP_EXT, I2C_RATE_100);
-
Serial.begin(115200);
-
-
// Read the WHO_AM_I register, this is a good test of communication
-
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
-
//Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
-
delay(5000);
-
-
if (c == 0x71) // WHO_AM_I should always be 0x68
-
{
-
Serial.println("C:Begin"); //Signal calibrating sensors
-
-
MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-
delay(5000);
-
-
calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
-
delay(1000);
-
-
initMPU9250(); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-
-
delay(1000);
-
-
// Get magnetometer calibration from AK8963 ROM
-
initAK8963(magCalibration); // Initialize device for active mode read of magnetometer
-
-
Serial.println("C:End"); //Signals done with calibration
-
-
}
-
else
-
{
-
Serial.print("E:");
-
Serial.print("Could not connect to MPU9250: 0x");
-
Serial.println(c, HEX);
-
while (1) ; // Loop forever if communication doesn't happen
-
}
-
}
-
-
void loop()
-
{
-
// If intPin goes high, all data registers have new data
-
if (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
-
readAccelData(accelCount); // Read the x/y/z adc values
-
getAres();
-
-
// Now we'll calculate the accleration value into actual g's
-
ax = (float)accelCount[0] * aRes; // - accelBias[0]; // get actual g value, this depends on scale being set
-
ay = (float)accelCount[1] * aRes; // - accelBias[1];
-
az = (float)accelCount[2] * aRes; // - accelBias[2];
-
-
readGyroData(gyroCount); // Read the x/y/z adc values
-
getGres();
-
-
// Calculate the gyro value into actual degrees per second
-
gx = (float)gyroCount[0] * gRes; // get actual gyro value, this depends on scale being set
-
gy = (float)gyroCount[1] * gRes;
-
gz = (float)gyroCount[2] * gRes;
-
-
readMagData(magCount); // Read the x/y/z adc values
-
getMres();
-
magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
-
magbias[1] = +120.; // User environmental x-axis correction in milliGauss
-
magbias[2] = +125.; // User environmental x-axis correction in milliGauss
-
-
// Calculate the magnetometer values in milliGauss
-
// Include factory calibration per data sheet and user environmental corrections
-
mx = (float)magCount[0] * mRes * magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
-
my = (float)magCount[1] * mRes * magCalibration[1] - magbias[1];
-
mz = (float)magCount[2] * mRes * magCalibration[2] - magbias[2];
-
}
-
-
Now = micros();
-
deltat = ((Now - lastUpdate) / 1000000.0f); // set integration time by time elapsed since last filter update
-
lastUpdate = Now;
-
-
sum += deltat; // sum for averaging filter update rate
-
sumCount++;
-
-
// Sensors x (y)-axis of the accelerometer is aligned with the y (x)-axis of the magnetometer;
-
// the magnetometer z-axis (+ down) is opposite to z-axis (+ up) of accelerometer and
-
// We have to make some allowance for this orientationmismatch in feeding the output to the quaternion filter.
-
-
MadgwickQuaternionUpdate(ax, ay, az, gx * PI / 180.0f, gy * PI / 180.0f, gz * PI / 180.0f, my, mx, mz);
-
-
Serial.print("Q:");
-
Serial.print(q[0], 5); //Print qw
-
Serial.print(",");
-
Serial.print(q[1], 5); //Print qx
-
Serial.print(",");
-
Serial.print(q[2], 5); //Print qy
-
Serial.print(",");
-
Serial.println(q[3], 5); //Print qz
-
}
-
-
-
-
//===================================================================================================================
-
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
-
//===================================================================================================================
-
-
void getMres() {
-
switch (Mscale)
-
{
-
// Possible magnetometer scales (and their register bit settings) are:
-
// 14 bit resolution (0) and 16 bit resolution (1)
-
case MFS_14BITS:
-
mRes = 10.*4912. / 8190.; // Proper scale to return milliGauss
-
break;
-
case MFS_16BITS:
-
mRes = 10.*4912. / 32760.0; // Proper scale to return milliGauss
-
break;
-
}
-
}
-
-
void getGres() {
-
switch (Gscale)
-
{
-
// Possible gyro scales (and their register bit settings) are:
-
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
-
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-
case GFS_250DPS:
-
gRes = 250.0 / 32768.0;
-
break;
-
case GFS_500DPS:
-
gRes = 500.0 / 32768.0;
-
break;
-
case GFS_1000DPS:
-
gRes = 1000.0 / 32768.0;
-
break;
-
case GFS_2000DPS:
-
gRes = 2000.0 / 32768.0;
-
break;
-
}
-
}
-
-
void getAres() {
-
switch (Ascale)
-
{
-
// Possible accelerometer scales (and their register bit settings) are:
-
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
-
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-
case AFS_2G:
-
aRes = 2.0 / 32768.0;
-
break;
-
case AFS_4G:
-
aRes = 4.0 / 32768.0;
-
break;
-
case AFS_8G:
-
aRes = 8.0 / 32768.0;
-
break;
-
case AFS_16G:
-
aRes = 16.0 / 32768.0;
-
break;
-
}
-
}
-
-
-
void readAccelData(int16_t * destination)
-
{
-
uint8_t rawData[6]; // x/y/z accel register data stored here
-
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
-
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
-
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
-
}
-
-
-
void readGyroData(int16_t * destination)
-
{
-
uint8_t rawData[6]; // x/y/z gyro register data stored here
-
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
-
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
-
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
-
}
-
-
void readMagData(int16_t * destination)
-
{
-
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
-
if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
-
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
-
uint8_t c = rawData[6]; // End data read by reading ST2 register
-
if (!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
-
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
-
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
-
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
-
}
-
}
-
}
-
-
void initAK8963(float * destination)
-
{
-
// First extract the factory calibration for each magnetometer axis
-
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
-
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
-
delay(10);
-
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
-
delay(10);
-
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
-
destination[0] = (float)(rawData[0] - 128) / 256. + 1.; // Return x-axis sensitivity adjustment values, etc.
-
destination[1] = (float)(rawData[1] - 128) / 256. + 1.;
-
destination[2] = (float)(rawData[2] - 128) / 256. + 1.;
-
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
-
delay(10);
-
// Configure the magnetometer for continuous read and highest resolution
-
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
-
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
-
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
-
delay(10);
-
}
-
-
-
void initMPU9250()
-
{
-
// wake up device
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
-
delay(100); // Wait for all registers to reset
-
-
// get stable time source
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
-
delay(200);
-
-
// Configure Gyro and Thermometer
-
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
-
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
-
// be higher than 1 / 0.0059 = 170 Hz
-
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
-
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
-
writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
-
-
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
-
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
-
// determined inset in CONFIG above
-
-
// Set gyroscope full scale range
-
// Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
-
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
-
// c = c & ~0xE0; // Clear self-test bits [7:5]
-
c = c & ~0x03; // Clear Fchoice bits [1:0]
-
c = c & ~0x18; // Clear GFS bits [4:3]
-
c = c | Gscale << 3; // Set full scale range for the gyro
-
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
-
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
-
-
// Set accelerometer full-scale range configuration
-
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
-
// c = c & ~0xE0; // Clear self-test bits [7:5]
-
c = c & ~0x18; // Clear AFS bits [4:3]
-
c = c | Ascale << 3; // Set full scale range for the accelerometer
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
-
-
// Set accelerometer sample rate configuration
-
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
-
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
-
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
-
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
-
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
-
-
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
-
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
-
-
// Configure Interrupts and Bypass Enable
-
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
-
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
-
// can join the I2C bus and all can be controlled by the Arduino as master
-
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
-
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
-
delay(100);
-
}
-
-
-
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
-
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
-
void calibrateMPU9250(float * dest1, float * dest2)
-
{
-
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
-
uint16_t ii, packet_count, fifo_count;
-
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
-
-
// reset device
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-
delay(100);
-
-
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
-
// else use the internal oscillator, bits 2:0 = 001
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
-
delay(200);
-
-
// Configure device for bias calculation
-
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
-
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
-
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
-
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
-
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
-
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
-
delay(15);
-
-
// Configure MPU6050 gyro and accelerometer for bias calculation
-
writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
-
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
-
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
-
-
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
-
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
-
-
// Configure FIFO to capture accelerometer and gyro data for bias calculation
-
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
-
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
-
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
-
-
// At end of sample accumulation, turn off FIFO sensor read
-
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
-
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
-
fifo_count = ((uint16_t)data[0] << 8) | data[1];
-
packet_count = fifo_count / 12; // How many sets of full gyro and accelerometer data for averaging
-
-
for (ii = 0; ii < packet_count; ii++) {
-
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
-
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
-
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
-
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
-
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
-
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
-
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
-
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
-
-
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
-
accel_bias[1] += (int32_t) accel_temp[1];
-
accel_bias[2] += (int32_t) accel_temp[2];
-
gyro_bias[0] += (int32_t) gyro_temp[0];
-
gyro_bias[1] += (int32_t) gyro_temp[1];
-
gyro_bias[2] += (int32_t) gyro_temp[2];
-
-
}
-
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
-
accel_bias[1] /= (int32_t) packet_count;
-
accel_bias[2] /= (int32_t) packet_count;
-
gyro_bias[0] /= (int32_t) packet_count;
-
gyro_bias[1] /= (int32_t) packet_count;
-
gyro_bias[2] /= (int32_t) packet_count;
-
-
if (accel_bias[2] > 0L) {
-
accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
-
}
-
else {
-
accel_bias[2] += (int32_t) accelsensitivity;
-
}
-
-
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-
data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-
data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-
data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
-
data[3] = (-gyro_bias[1] / 4) & 0xFF;
-
data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
-
data[5] = (-gyro_bias[2] / 4) & 0xFF;
-
-
// Push gyro biases to hardware registers
-
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
-
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
-
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
-
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
-
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
-
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
-
-
// Output scaled gyro biases for display in the main program
-
dest1[0] = (float) gyro_bias[0] / (float) gyrosensitivity;
-
dest1[1] = (float) gyro_bias[1] / (float) gyrosensitivity;
-
dest1[2] = (float) gyro_bias[2] / (float) gyrosensitivity;
-
-
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
-
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
-
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
-
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
-
// the accelerometer biases calculated above must be divided by 8.
-
-
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-
readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
-
readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
-
readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
-
-
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
-
-
for (ii = 0; ii < 3; ii++) {
-
if ((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
-
}
-
-
// Construct total accelerometer bias, including calculated average accelerometer bias from above
-
accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-
accel_bias_reg[1] -= (accel_bias[1] / 8);
-
accel_bias_reg[2] -= (accel_bias[2] / 8);
-
-
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-
data[1] = (accel_bias_reg[0]) & 0xFF;
-
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-
data[3] = (accel_bias_reg[1]) & 0xFF;
-
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-
data[5] = (accel_bias_reg[2]) & 0xFF;
-
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-
-
// Apparently this is not working for the acceleration biases in the MPU-9250
-
// Are we handling the temperature correction bit properly?
-
// Push accelerometer biases to hardware registers
-
writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
-
writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
-
writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
-
writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
-
writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
-
writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
-
-
// Output scaled accelerometer biases for display in the main program
-
dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
-
dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
-
dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
-
}
-
-
// Accelerometer and gyroscope self test; check calibration wrt factory settings
-
void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
-
{
-
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
-
uint8_t selfTest[6];
-
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
-
float factoryTrim[6];
-
uint8_t FS = 0;
-
-
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
-
writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
-
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, FS << 3); // Set full scale range for the gyro to 250 dps
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, FS << 3); // Set full scale range for the accelerometer to 2 g
-
-
for ( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
-
-
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-
-
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-
}
-
-
for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
-
aAvg[ii] /= 200;
-
gAvg[ii] /= 200;
-
}
-
-
// Configure the accelerometer for self-test
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
-
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-
delay(25); // Delay a while to let the device stabilize
-
-
for ( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
-
-
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-
-
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-
}
-
-
for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
-
aSTAvg[ii] /= 200;
-
gSTAvg[ii] /= 200;
-
}
-
-
// Configure the gyro and accelerometer for normal operation
-
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
-
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
-
delay(25); // Delay a while to let the device stabilize
-
-
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
-
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
-
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
-
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
-
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
-
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
-
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
-
-
// Retrieve factory self-test value from self-test code reads
-
factoryTrim[0] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
-
factoryTrim[1] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
-
factoryTrim[2] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
-
factoryTrim[3] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
-
factoryTrim[4] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
-
factoryTrim[5] = (float)(2620 / 1 << FS) * (pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
-
-
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
-
// To get percent, must multiply by 100
-
for (int i = 0; i < 3; i++) {
-
destination[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] - 100.; // Report percent differences
-
destination[i + 3] = 100.0 * ((float)(gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3] - 100.; // Report percent differences
-
}
-
-
}
-
-
-
-
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
-
{
-
Wire1.beginTransmission(address); // Initialize the Tx buffer
-
Wire1.write(subAddress); // Put slave register address in Tx buffer
-
Wire1.write(data); // Put data in Tx buffer
-
Wire1.endTransmission(); // Send the Tx buffer
-
}
-
-
uint8_t readByte(uint8_t address, uint8_t subAddress)
-
{
-
uint8_t data; // `data` will store the register data
-
Wire1.beginTransmission(address); // Initialize the Tx buffer
-
Wire1.write(subAddress); // Put slave register address in Tx buffer
-
Wire1.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
-
// Wire1.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
-
// Wire1.requestFrom(address, 1); // Read one byte from slave register address
-
Wire1.requestFrom(address, (size_t) 1); // Read one byte from slave register address
-
data = Wire1.read(); // Fill Rx buffer with result
-
return data; // Return data read from slave register
-
}
-
-
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
-
{
-
Wire1.beginTransmission(address); // Initialize the Tx buffer
-
Wire1.write(subAddress); // Put slave register address in Tx buffer
-
Wire1.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
-
// Wire1.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
-
uint8_t i = 0;
-
// Wire1.requestFrom(address, count); // Read bytes from slave register address
-
Wire1.requestFrom(address, (size_t) count); // Read bytes from slave register address
-
while (Wire1.available()) {
-
dest[i++] = Wire1.read();
-
} // Put read results in the Rx buffer
-
}
-
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
-
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
-
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
-
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
-
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
-
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
-
void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
-
{
-
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
-
float norm;
-
float hx, hy, _2bx, _2bz;
-
float s1, s2, s3, s4;
-
float qDot1, qDot2, qDot3, qDot4;
-
-
// Auxiliary variables to avoid repeated arithmetic
-
float _2q1mx;
-
float _2q1my;
-
float _2q1mz;
-
float _2q2mx;
-
float _4bx;
-
float _4bz;
-
float _2q1 = 2.0f * q1;
-
float _2q2 = 2.0f * q2;
-
float _2q3 = 2.0f * q3;
-
float _2q4 = 2.0f * q4;
-
float _2q1q3 = 2.0f * q1 * q3;
-
float _2q3q4 = 2.0f * q3 * q4;
-
float q1q1 = q1 * q1;
-
float q1q2 = q1 * q2;
-
float q1q3 = q1 * q3;
-
float q1q4 = q1 * q4;
-
float q2q2 = q2 * q2;
-
float q2q3 = q2 * q3;
-
float q2q4 = q2 * q4;
-
float q3q3 = q3 * q3;
-
float q3q4 = q3 * q4;
-
float q4q4 = q4 * q4;
-
-
// Normalise accelerometer measurement
-
norm = sqrtf(ax * ax + ay * ay + az * az);
-
if (norm == 0.0f) return; // handle NaN
-
norm = 1.0f/norm;
-
ax *= norm;
-
ay *= norm;
-
az *= norm;
-
-
// Normalise magnetometer measurement
-
norm = sqrtf(mx * mx + my * my + mz * mz);
-
if (norm == 0.0f) return; // handle NaN
-
norm = 1.0f/norm;
-
mx *= norm;
-
my *= norm;
-
mz *= norm;
-
-
// Reference direction of Earth's magnetic field
-
_2q1mx = 2.0f * q1 * mx;
-
_2q1my = 2.0f * q1 * my;
-
_2q1mz = 2.0f * q1 * mz;
-
_2q2mx = 2.0f * q2 * mx;
-
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
-
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
-
_2bx = sqrtf(hx * hx + hy * hy);
-
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
-
_4bx = 2.0f * _2bx;
-
_4bz = 2.0f * _2bz;
-
-
// Gradient decent algorithm corrective step
-
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-
norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
-
norm = 1.0f/norm;
-
s1 *= norm;
-
s2 *= norm;
-
s3 *= norm;
-
s4 *= norm;
-
-
// Compute rate of change of quaternion
-
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
-
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
-
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
-
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
-
-
// Integrate to yield quaternion
-
q1 += qDot1 * deltat;
-
q2 += qDot2 * deltat;
-
q3 += qDot3 * deltat;
-
q4 += qDot4 * deltat;
-
norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
-
norm = 1.0f/norm;
-
q[0] = q1 * norm;
-
q[1] = q2 * norm;
-
q[2] = q3 * norm;
-
q[3] = q4 * norm;
-
-
}
-
-
-
-
// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
-
// measured ones.
-
void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
-
{
-
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
-
float norm;
-
float hx, hy, bx, bz;
-
float vx, vy, vz, wx, wy, wz;
-
float ex, ey, ez;
-
float pa, pb, pc;
-
-
// Auxiliary variables to avoid repeated arithmetic
-
float q1q1 = q1 * q1;
-
float q1q2 = q1 * q2;
-
float q1q3 = q1 * q3;
-
float q1q4 = q1 * q4;
-
float q2q2 = q2 * q2;
-
float q2q3 = q2 * q3;
-
float q2q4 = q2 * q4;
-
float q3q3 = q3 * q3;
-
float q3q4 = q3 * q4;
-
float q4q4 = q4 * q4;
-
-
// Normalise accelerometer measurement
-
norm = sqrtf(ax * ax + ay * ay + az * az);
-
if (norm == 0.0f) return; // handle NaN
-
norm = 1.0f / norm; // use reciprocal for division
-
ax *= norm;
-
ay *= norm;
-
az *= norm;
-
-
// Normalise magnetometer measurement
-
norm = sqrtf(mx * mx + my * my + mz * mz);
-
if (norm == 0.0f) return; // handle NaN
-
norm = 1.0f / norm; // use reciprocal for division
-
mx *= norm;
-
my *= norm;
-
mz *= norm;
-
-
// Reference direction of Earth
采用 MPU9250的话.
首先配置
MPU_9250_I2C_SLAVE_ADDR = 0x68 MPU_9250_I2C_DEVICE_ID = 0x71
|
-
write_byte_data(PWR_MGMT_1, 0x01) /* Reset device. */
-
time_sleep(0.1)
-
write_byte_data(PWR_MGMT_1, 0x00) /* Wake up chip. */
-
-
write_byte_data(CONFIG, 0x03) //0x1A --> accel bandwidth=44 delay=4.9ms gyroscope:band width=42Hz, delay=4.8ms 1Khz : 低通滤波
-
write_byte_data(SMPLRT_DIV, 0x09) //0x19 --> 采样频率= 陀螺仪输出频率 / ( 1+SMPLRT_DIV). 根据低通滤波设置, 陀螺仪输出频率为 1KHz. 这样设定采样频率为 100Hz. 即 FIFO输出/DMP采样/运动检测都基于此采样频率.
-
write_byte_data(GYRO_CONFIG, gyro_range << 3) //0x1B--> GYRO_RANGE_250
-
write_byte_data(ACCEL_CONFIG, accel_range << 3) //0x1C --> ACCEL_RANGE_2G
-
write_byte_data(ACCEL_CONFIG_2, 0x03) //低通滤波二配置.
-
write_byte_data(INT_PIN_CFG, 0x02) //0x37 --> 直接访问扩展IIC.即访问磁力计
从寄存器的取值为 ADC的值. 16 位 ADC 的 加速度/ 角速度 对应的实际数值转化过来, 扣除最初的符号位.
实际加速度值 = 寄存器值 / (精度
2.0g/32768.0) //
ACCEL_RANGE_2G 时
实际角速度值 = (
寄存器值 / (精度 250.0/32768.0) ) * PI/180.0f //
GYRO_RANGE_250 时
最高为1时, 记得变换成 负值.
角速度
采样完毕, INT_STATUS = 0x3A 寄存器 0x01 设置, 从寄存器 ACCEL_OUT 0x3B/GYRO_OUT 0x41 读出信息, 转化成实际速度值.
计算四元数
-
#include "IMU.h"
-
-
#include "math.h"
-
-
#include "Maths.h"
-
-
// ==================================================================================
-
-
//加Q: 4 4 8 2 2 2 46 5 讨论
-
-
// 描述:
-
-
// 必须定义'halfT '为周期的一半,以及滤波器的参数Kp和Ki
-
-
// 四元数'q0', 'q1', 'q2', 'q3'定义为全局变量
-
-
// 需要在每一个采样周期调用'IMUupdate()'函数
-
-
// 陀螺仪数据单位是弧度/秒,加速度计的单位无关重要,因为会被规范化
-
-
// ==================================================================================
-
-
#define Kp 90.0f // 比例常数
-
-
#define Ki 0.001f // 积分常数
-
-
#define halfT 0.0005f//半周期
-
-
#define T 0.001f // 周期为1ms
-
-
// ==================================================================================
-
-
// 变量定义
-
-
float q0 = 1, q1 = 0, q2 = 0, q3 = 0; // 四元数
-
-
float exInt = 0, eyInt = 0, ezInt = 0; // 误差积分累计值
-
-
// ==================================================================================
-
-
// 函数原型:void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)
-
-
// 功 能:互补滤波进行姿态解算
-
-
// 输 入:陀螺仪数据及加速度计数据
-
-
// ==================================================================================
-
-
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)
-
-
{
-
-
float norm;
-
-
float vx, vy, vz;
-
-
float ex, ey, ez;
-
-
//四元数积分,求得当前的姿态
-
-
float q0_last = q0;
-
-
float q1_last = q1;
-
-
float q2_last = q2;
-
-
float q3_last = q3;
-
-
//把加速度计的三维向量转成单位向量
-
-
norm = invSqrt(ax*ax + ay*ay + az*az);
-
-
ax = ax * norm;
-
-
ay = ay * norm;
-
-
az = az * norm;
-
-
//估计重力加速度方向在飞行器坐标系中的表示,为四元数表示的旋转矩阵的第三行
-
-
vx = 2*(q1*q3 - q0*q2);
-
-
vy = 2*(q0*q1 + q2*q3);
-
-
vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
-
-
//加速度计读取的方向与重力加速度方向的差值,用向量叉乘计算
-
-
ex = ay*vz - az*vy;
-
-
ey = az*vx - ax*vz;
-
-
ez = ax*vy - ay*vx;
-
-
//误差累积,已与积分常数相乘
-
-
exInt = exInt + ex*Ki;
-
-
eyInt = eyInt + ey*Ki;
-
-
ezInt = ezInt + ez*Ki;
-
-
//用叉积误差来做PI修正陀螺零偏,即抵消陀螺读数中的偏移量
-
-
gx = gx + Kp*ex + exInt;
-
-
gy = gy + Kp*ey + eyInt;
-
-
gz = gz + Kp*ez + ezInt;
-
-
//一阶近似算法
-
-
q0 = q0_last + (-q1_last*gx - q2_last*gy - q3_last*gz)*halfT;
-
-
q1 = q1_last + ( q0_last*gx + q2_last*gz - q3_last*gy)*halfT;
-
-
q2 = q2_last + ( q0_last*gy - q1_last*gz + q3_last*gx)*halfT;
-
-
q3 = q3_last + ( q0_last*gz + q1_last*gy - q2_last*gx)*halfT;
-
-
// //二阶近似算法
-
-
// float delta2 = (gx*gx + gy*gy + gz*gz)*T*T;
-
-
// q0 = q0_last*(1-delta2/8) + (-q1_last*gx - q2_last*gy - q3_last*gz)*halfT;
-
-
// q1 = q1_last*(1-delta2/8) + ( q0_last*gx + q2_last*gz - q3_last*gy)*halfT;
-
-
// q2 = q2_last*(1-delta2/8) + ( q0_last*gy - q1_last*gz + q3_last*gx)*halfT;
-
-
// q3 = q3_last*(1-delta2/8) + ( q0_last*gz + q1_last*gy - q2_last*gx)*halfT;
-
-
// //三阶近似算法
-
-
// float delta2 = (gx*gx + gy*gy + gz*gz)*T*T;
-
-
// q0 = q0_last*(1-delta2/8) + (-q1_last*gx - q2_last*gy - q3_last*gz)*T*(0.5 - delta2/48);
-
-
// q1 = q1_last*(1-delta2/8) + ( q0_last*gx + q2_last*gz - q3_last*gy)*T*(0.5 - delta2/48);
-
-
// q2 = q2_last*(1-delta2/8) + ( q0_last*gy - q1_last*gz + q3_last*gx)*T*(0.5 - delta2/48);
-
-
// q3 = q3_last*(1-delta2/8) + ( q0_last*gz + q1_last*gy - q2_last*gx)*T*(0.5 - delta2/48);
-
-
// //四阶近似算法
-
-
// float delta2 = (gx*gx + gy*gy + gz*gz)*T*T;
-
-
// q0 = q0_last*(1 - delta2/8 + delta2*delta2/384) + (-q1_last*gx - q2_last*gy - q3_last*gz)*T*(0.5 - delta2/48);
-
-
// q1 = q1_last*(1 - delta2/8 + delta2*delta2/384) + ( q0_last*gx + q2_last*gz - q3_last*gy)*T*(0.5 - delta2/48);
-
-
// q2 = q2_last*(1 - delta2/8 + delta2*delta2/384) + ( q0_last*gy - q1_last*gz + q3_last*gx)*T*(0.5 - delta2/48);
-
-
// q3 = q3_last*(1 - delta2/8 + delta2*delta2/384) + ( q0_last*gz + q1_last*gy - q2_last*gx)*T*(0.5 - delta2/48);
-
-
//四元数规范化
-
-
norm = invSqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
-
-
q0 = q0 * norm;
-
-
q1 = q1 * norm;
-
-
q2 = q2 * norm;
-
-
q3 = q3 * norm;
-
-
//out_angle.yaw += filter_gyro.z * RawData_to_Angle * 0.001f;
-
-
out_angle.yaw = atan2(2 * q1 * q2 + 2 * q0 * q3, -2 * q2*q2 - 2 * q3* q3 + 1)* 57.3;
-
-
}
-
-
//Pitch是围绕X轴旋转,也叫作俯仰角
-
-
//roll是围绕Y轴旋转,也叫作翻滚角
-
-
//yaw是围绕Z轴旋转,也叫作偏航角
-
-
/******************************************************************************
-
-
函数原型: void Get_Eulerian_Angle(struct _out_angle *angle)
-
-
功 能: 四元数转欧拉角
-
-
*******************************************************************************/
-
-
void Get_Eulerian_Angle(struct _out_angle *angle)
-
-
{
-
-
angle->pitch = -atan2(2.0f*(q0*q1 + q2*q3),q0*q0 - q1*q1 - q2*q2 + q3*q3)*Radian_to_Angle;
-
-
angle->roll = asin (2.0f*(q0*q2 - q1*q3))*Radian_to_Angle;
-
-
Angle.pitch = angle->pitch;
-
-
Angle.roll = angle->roll;
-
-
Angle.yaw = out_angle.yaw;
-
-
}
阅读(10546) | 评论(0) | 转发(0) |