Chinaunix首页 | 论坛 | 博客
  • 博客访问: 9505192
  • 博文数量: 1758
  • 博客积分: 12961
  • 博客等级: 上将
  • 技术积分: 20171
  • 用 户 组: 普通用户
  • 注册时间: 2009-01-09 11:25
个人简介

偷得浮生半桶水(半日闲), 好记性不如抄下来(烂笔头). 信息爆炸的时代, 学习是一项持续的工作.

文章分类

全部博文(1758)

文章存档

2025年(7)

2024年(27)

2023年(26)

2022年(112)

2021年(217)

2020年(157)

2019年(192)

2018年(81)

2017年(78)

2016年(70)

2015年(52)

2014年(40)

2013年(51)

2012年(85)

2011年(45)

2010年(231)

2009年(287)

分类: Windows平台

2017-07-24 14:34:06

参考 
http://blog.csdn.net/augusdi/article/details/12833235

CUDA从入门到精通(一):环境搭建


NVIDIA于2006年推出CUDA(Compute Unified Devices Architecture),可以利用其推出的GPU进行通用计算,将并行计算从大型集群扩展到了普通显卡,使得用户只需要一台带有Geforce显卡的笔记本就能跑较大规模的并行处理程序。

 

使用显卡的好处是,和大型集群相比功耗非常低,成本也不高,但性能很突出。以我的笔记本为例,Geforce 610M,用DeviceQuery程序,可得到如下硬件参数:

计算能力达48X0.95 = 45.6 GFLOPS。而笔记本的CPU参数如下:

CPU计算能力为(4核):2.5G*4 = 10GFLOPS,可见,显卡计算性能是4核i5 CPU的4~5倍,因此我们可以充分利用这一资源来对一些耗时的应用进行加速。

 

好了,工欲善其事必先利其器,为了使用CUDA对GPU进行编程,我们需要准备以下必备工具:

1. 硬件平台,就是显卡,如果你用的不是NVIDIA的显卡,那么只能说抱歉,其他都不支持CUDA。

2. ,我用过windows XP,Windows 7都没问题,本博客用Windows7。

3. C编译器,建议VS2008,和本博客一致。

4. CUDA编译器NVCC,可以免费免注册免license从官网下载CUDA ToolkitCUDA下载,最新版本为5.0,本博客用的就是该版本。

5. 其他工具(如Visual Assist,辅助代码高亮)

 

准备完毕,开始安装软件。VS2008安装比较费时间,建议安装完整版(NVIDIA官网说Express版也可以),过程不必详述。CUDA Toolkit 5.0里面包含了NVCC编译器、设计文档、设计例程、CUDA运行时库、CUDA头文件等必备的原材料。

安装完毕,我们在桌面上发现这个图标:

不错,就是它,双击运行,可以看到一大堆例程。我们找到Simple OpenGL这个运行看看效果:

  点右边黄线标记处的Run即可看到美妙的三维正弦曲面,鼠标左键拖动可以转换角度,右键拖动可以缩放。如果这个运行成功,说明你的环境基本搭建成功。

出现问题的可能:

1. 你使用远程桌面连接登录到另一台服务器,该服务器上有显卡支持CUDA,但你远程终端不能运行CUDA程序。这是因为远程登录使用的是你本地显卡资源,在远程登录时看不到服务器端的显卡,所以会报错:没有支持CUDA的显卡!解决方法:1. 远程服务器装两块显卡,一块只用于显示,另一块用于计算;2.不要用图形界面登录,而是用命令行界面如telnet登录。

2.有两个以上显卡都支持CUDA的情况,如何区分是在哪个显卡上运行?这个需要你在程序里控制,选择符合一定条件的显卡,如较高的时钟频率、较大的显存、较高的计算版本等。详细操作见后面的博客。

好了,先说这么多,下一节我们介绍如何在VS2008中给GPU编程。

CUDA从入门到精通(二):第一个CUDA程序


书接上回,我们既然直接运行例程成功了,接下来就是了解如何实现例程中的每个环节。当然,我们先从简单的做起,一般编程语言都会找个helloworld例子,而我们的显卡是不会说话的,只能做一些简单的加减乘除运算。所以,CUDA程序的helloworld,我想应该最合适不过的就是向量加了。

打开VS2008,选择File->New->Project,弹出下面对话框,设置如下:

之后点OK,直接进入工程界面。

工程中,我们看到只有一个.cu文件,内容如下:

[cpp] view plain copy
  1. #include "cuda_runtime.h"  
  2. #include "device_launch_parameters.h"  
  3.   
  4. #include   
  5.   
  6. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);  
  7.   
  8. __global__ void addKernel(int *c, const int *a, const int *b)  
  9. {  
  10.     int i = threadIdx.x;  
  11.     c[i] = a[i] + b[i];  
  12. }  
  13.   
  14. int main()  
  15. {  
  16.     const int arraySize = 5;  
  17.     const int a[arraySize] = { 1, 2, 3, 4, 5 };  
  18.     const int b[arraySize] = { 10, 20, 30, 40, 50 };  
  19.     int c[arraySize] = { 0 };  
  20.   
  21.     // Add vectors in parallel.  
  22.     cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);  
  23.     if (cudaStatus != cudaSuccess) {  
  24.         fprintf(stderr, "addWithCuda failed!");  
  25.         return 1;  
  26.     }  
  27.   
  28.     printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",  
  29.         c[0], c[1], c[2], c[3], c[4]);  
  30.   
  31.     // cudaThreadExit must be called before exiting in order for profiling and  
  32.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  33.     cudaStatus = cudaThreadExit();  
  34.     if (cudaStatus != cudaSuccess) {  
  35.         fprintf(stderr, "cudaThreadExit failed!");  
  36.         return 1;  
  37.     }  
  38.   
  39.     return 0;  
  40. }  
  41.   
  42. // Helper function for using CUDA to add vectors in parallel.  
  43. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)  
  44. {  
  45.     int *dev_a = 0;  
  46.     int *dev_b = 0;  
  47.     int *dev_c = 0;  
  48.     cudaError_t cudaStatus;  
  49.   
  50.     // Choose which GPU to run on, change this on a multi-GPU system.  
  51.     cudaStatus = cudaSetDevice(0);  
  52.     if (cudaStatus != cudaSuccess) {  
  53.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  54.         goto Error;  
  55.     }  
  56.   
  57.     // Allocate GPU buffers for three vectors (two input, one output)    .  
  58.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  59.     if (cudaStatus != cudaSuccess) {  
  60.         fprintf(stderr, "cudaMalloc failed!");  
  61.         goto Error;  
  62.     }  
  63.   
  64.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  65.     if (cudaStatus != cudaSuccess) {  
  66.         fprintf(stderr, "cudaMalloc failed!");  
  67.         goto Error;  
  68.     }  
  69.   
  70.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  71.     if (cudaStatus != cudaSuccess) {  
  72.         fprintf(stderr, "cudaMalloc failed!");  
  73.         goto Error;  
  74.     }  
  75.   
  76.     // Copy input vectors from host memory to GPU buffers.  
  77.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  78.     if (cudaStatus != cudaSuccess) {  
  79.         fprintf(stderr, "cudaMemcpy failed!");  
  80.         goto Error;  
  81.     }  
  82.   
  83.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  84.     if (cudaStatus != cudaSuccess) {  
  85.         fprintf(stderr, "cudaMemcpy failed!");  
  86.         goto Error;  
  87.     }  
  88.   
  89.     // Launch a kernel on the GPU with one thread for each element.  
  90.     addKernel<<<1, size>>>(dev_c, dev_a, dev_b);  
  91.   
  92.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  93.     // any errors encountered during the launch.  
  94.     cudaStatus = cudaThreadSynchronize();  
  95.     if (cudaStatus != cudaSuccess) {  
  96.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  97.         goto Error;  
  98.     }  
  99.   
  100.     // Copy output vector from GPU buffer to host memory.  
  101.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  102.     if (cudaStatus != cudaSuccess) {  
  103.         fprintf(stderr, "cudaMemcpy failed!");  
  104.         goto Error;  
  105.     }  
  106.   
  107. Error:  
  108.     cudaFree(dev_c);  
  109.     cudaFree(dev_a);  
  110.     cudaFree(dev_b);  
  111.       
  112.     return cudaStatus;  
  113. }  
 可以看出,CUDA程序和C程序并无区别,只是多了一些以"cuda"开头的一些库函数和一个特殊声明的函数:
[cpp] view plain copy
  1. __global__ void addKernel(int *c, const int *a, const int *b)  
  2. {  
  3.     int i = threadIdx.x;  
  4.     c[i] = a[i] + b[i];  
  5. }  

这个函数就是在GPU上运行的函数,称之为核函数,英文名Kernel Function,注意要和操作系统内核函数区分开来。

我们直接按F7编译,可以得到如下输出:

[html] view plain copy
  1. 1>------ Build started: Project: cuda_helloworld, Configuration: Debug Win32 ------    
  2. 1>Compiling with CUDA Build Rule...    
  3. 1>"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\nvcc.exe"  -G   -gencode=arch=compute_10,code=\"sm_10,compute_10\" -gencode=arch=compute_20,code=\"sm_20,compute_20\"  --machine 32 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin"    -Xcompiler "/EHsc /W3 /nologo /O2 /Zi   /MT  "  -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\include" -maxrregcount=0   --compile -o "Debug/kernel.cu.obj" kernel.cu      
  4. 1>tmpxft_000000ec_00000000-8_kernel.compute_10.cudafe1.gpu    
  5. 1>tmpxft_000000ec_00000000-14_kernel.compute_10.cudafe2.gpu    
  6. 1>tmpxft_000000ec_00000000-5_kernel.compute_20.cudafe1.gpu    
  7. 1>tmpxft_000000ec_00000000-17_kernel.compute_20.cudafe2.gpu    
  8. 1>kernel.cu    
  9. 1>kernel.cu    
  10. 1>tmpxft_000000ec_00000000-8_kernel.compute_10.cudafe1.cpp    
  11. 1>tmpxft_000000ec_00000000-24_kernel.compute_10.ii    
  12. 1>Linking...    
  13. 1>Embedding manifest...    
  14. 1>Performing Post-Build Event...    
  15. 1>copy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart*.dll" "C:\Users\DongXiaoman\Documents\Visual Studio 2008\Projects\cuda_helloworld\Debug"    
  16. 1>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart32_50_35.dll    
  17. 1>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\\bin\cudart64_50_35.dll    
  18. 1>已复制         2 个文件。    
  19. 1>Build log was saved at "file://c:\Users\DongXiaoman\Documents\Visual Studio 2008\Projects\cuda_helloworld\cuda_helloworld\Debug\BuildLog.htm"    
  20. 1>cuda_helloworld - 0 error(s), 105 warning(s)    
  21. ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========    


可见,编译.cu文件需要利用nvcc工具。该工具的详细使用见后面博客。

直接运行,可以得到结果图如下:

如果显示正确,那么我们的第一个程序宣告成功!


刚入门CUDA,跑过几个官方提供的例程,看了看人家的代码,觉得并不难,但自己动手写代码时,总是不知道要先干什么,后干什么,也不知道从哪个知识点学起。这时就需要有一本能提供指导的书籍或者教程,一步步跟着做下去,直到真正掌握。

一般讲述CUDA的书,我认为不错的有下面这几本:

初学者可以先看美国人写的这本《GPU高性能编程CUDA实战》,可操作性很强,但不要期望能全看懂(Ps:里面有些概念其实我现在还是不怎么懂),但不影响你进一步学习。如果想更全面地学习CUDA,《GPGPU编程技术》比较客观详细地介绍了通用GPU编程的策略,看过这本书,可以对显卡有更深入的了解,揭开GPU的神秘面纱。后面《OpenGL编程指南》完全是为了体验图形交互带来的乐趣,可以有选择地看;《GPU高性能运算之CUDA》这本是师兄给的,适合快速查询(感觉是将官方编程手册翻译了一遍)一些关键技术和概念。

有了这些指导材料还不够,我们在做项目的时候,遇到的问题在这些书上肯定找不到,所以还需要有下面这些利器:

这里面有很多工具的使用手册,如CUDA_GDB,Nsight,CUDA_Profiler等,方便调试程序;还有一些有用的库,如CUFFT是专门用来做快速傅里叶变换的,CUBLAS是专用于线性代数(矩阵、向量计算)的,CUSPASE是专用于稀疏矩阵表示和计算的库。这些库的使用可以降低我们设计的难度,提高开发效率。另外还有些入门教程也是值得一读的,你会对NVCC编译器有更近距离的接触。

好了,前言就这么多,本博主计划按如下顺序来讲述CUDA:

1.了解设备

2.线程并行

3.块并行

4.流并行

5.线程通信

6.线程通信实例:规约

7.存储模型

8.常数内存

9.纹理内存

10.主机页锁定内存

11.图形互操作

12.优化准则

13.CUDA与MATLAB接口

14.CUDA与MFC接口


前面三节已经对CUDA做了一个简单的介绍,这一节开始真正进入编程环节。

首先,初学者应该对自己使用的设备有较为扎实的理解和掌握,这样对后面学习并行程序优化很有帮助,了解硬件详细参数可以通过上节介绍的几本书和官方资料获得,但如果仍然觉得不够直观,那么我们可以自己动手获得这些内容。

以第二节例程为模板,我们稍加改动的部分代码如下:

[cpp] view plain copy
  1. // Add vectors in parallel.  
  2. cudaError_t cudaStatus;  
  3. int num = 0;  
  4. cudaDeviceProp prop;  
  5. cudaStatus = cudaGetDeviceCount(&num);  
  6. for(int i = 0;i
  7. {  
  8.     cudaGetDeviceProperties(&prop,i);  
  9. }  
  10. cudaStatus = addWithCuda(c, a, b, arraySize);  


这个改动的目的是让我们的程序自动通过调用cuda API函数获得设备数目和属性,所谓“知己知彼,百战不殆”。

cudaError_t 是cuda错误类型,取值为整数。

cudaDeviceProp为设备属性结构体,其定义可以从cuda Toolkit安装目录中找到,我的路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\include\driver_types.h,找到定义为:

[cpp] view plain copy
  1. /** 
  2.  * CUDA device properties 
  3.  */  
  4. struct __device_builtin__ cudaDeviceProp  
  5. {  
  6.     char   name[256];                  /**< ASCII string identifying device */  
  7.     size_t totalGlobalMem;             /**< Global memory available on device in bytes */  
  8.     size_t sharedMemPerBlock;          /**< Shared memory available per block in bytes */  
  9.     int    regsPerBlock;               /**< 32-bit registers available per block */  
  10.     int    warpSize;                   /**< Warp size in threads */  
  11.     size_t memPitch;                   /**< Maximum pitch in bytes allowed by memory copies */  
  12.     int    maxThreadsPerBlock;         /**< Maximum number of threads per block */  
  13.     int    maxThreadsDim[3];           /**< Maximum size of each dimension of a block */  
  14.     int    maxGridSize[3];             /**< Maximum size of each dimension of a grid */  
  15.     int    clockRate;                  /**< Clock frequency in kilohertz */  
  16.     size_t totalConstMem;              /**< Constant memory available on device in bytes */  
  17.     int    major;                      /**< Major compute capability */  
  18.     int    minor;                      /**< Minor compute capability */  
  19.     size_t textureAlignment;           /**< Alignment requirement for textures */  
  20.     size_t texturePitchAlignment;      /**< Pitch alignment requirement for texture references bound to pitched memory */  
  21.     int    deviceOverlap;              /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */  
  22.     int    multiProcessorCount;        /**< Number of multiprocessors on device */  
  23.     int    kernelExecTimeoutEnabled;   /**< Specified whether there is a run time limit on kernels */  
  24.     int    integrated;                 /**< Device is integrated as opposed to discrete */  
  25.     int    canMapHostMemory;           /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */  
  26.     int    computeMode;                /**< Compute mode (See ::cudaComputeMode) */  
  27.     int    maxTexture1D;               /**< Maximum 1D texture size */  
  28.     int    maxTexture1DMipmap;         /**< Maximum 1D mipmapped texture size */  
  29.     int    maxTexture1DLinear;         /**< Maximum size for 1D textures bound to linear memory */  
  30.     int    maxTexture2D[2];            /**< Maximum 2D texture dimensions */  
  31.     int    maxTexture2DMipmap[2];      /**< Maximum 2D mipmapped texture dimensions */  
  32.     int    maxTexture2DLinear[3];      /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */  
  33.     int    maxTexture2DGather[2];      /**< Maximum 2D texture dimensions if texture gather operations have to be performed */  
  34.     int    maxTexture3D[3];            /**< Maximum 3D texture dimensions */  
  35.     int    maxTextureCubemap;          /**< Maximum Cubemap texture dimensions */  
  36.     int    maxTexture1DLayered[2];     /**< Maximum 1D layered texture dimensions */  
  37.     int    maxTexture2DLayered[3];     /**< Maximum 2D layered texture dimensions */  
  38.     int    maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */  
  39.     int    maxSurface1D;               /**< Maximum 1D surface size */  
  40.     int    maxSurface2D[2];            /**< Maximum 2D surface dimensions */  
  41.     int    maxSurface3D[3];            /**< Maximum 3D surface dimensions */  
  42.     int    maxSurface1DLayered[2];     /**< Maximum 1D layered surface dimensions */  
  43.     int    maxSurface2DLayered[3];     /**< Maximum 2D layered surface dimensions */  
  44.     int    maxSurfaceCubemap;          /**< Maximum Cubemap surface dimensions */  
  45.     int    maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */  
  46.     size_t surfaceAlignment;           /**< Alignment requirements for surfaces */  
  47.     int    concurrentKernels;          /**< Device can possibly execute multiple kernels concurrently */  
  48.     int    ECCEnabled;                 /**< Device has ECC support enabled */  
  49.     int    pciBusID;                   /**< PCI bus ID of the device */  
  50.     int    pciDeviceID;                /**< PCI device ID of the device */  
  51.     int    pciDomainID;                /**< PCI domain ID of the device */  
  52.     int    tccDriver;                  /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */  
  53.     int    asyncEngineCount;           /**< Number of asynchronous engines */  
  54.     int    unifiedAddressing;          /**< Device shares a unified address space with the host */  
  55.     int    memoryClockRate;            /**< Peak memory clock frequency in kilohertz */  
  56.     int    memoryBusWidth;             /**< Global memory bus width in bits */  
  57.     int    l2CacheSize;                /**< Size of L2 cache in bytes */  
  58.     int    maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */  
  59. };  


后面的注释已经说明了其字段代表意义,可能有些术语对于初学者理解起来还是有一定困难,没关系,我们现在只需要关注以下几个指标:

name:就是设备名称;

totalGlobalMem:就是显存大小;

major,minor:CUDA设备版本号,有1.1, 1.2, 1.3, 2.0, 2.1等多个版本;

clockRate:GPU时钟频率;

multiProcessorCount:GPU大核数,一个大核(专业点称为流多处理器,SM,Stream-Multiprocessor)包含多个小核(流处理器,SP,Stream-Processor)

编译,运行,我们在VS2008工程的cudaGetDeviceProperties()函数处放一个断点,单步执行这一函数,然后用Watch窗口,切换到Auto页,展开+,在我的笔记本上得到如下结果:

可以看到,设备名为GeForce 610M,显存1GB,设备版本2.1(比较高端了,哈哈),时钟频率为950MHz(注意950000单位为kHz),大核数为1。在一些高性能GPU上(如Tesla,Kepler系列),大核数可能达到几十甚至上百,可以做更大规模的并行处理。

PS:今天看SDK代码时发现在help_cuda.h中有个函数实现从CUDA设备版本查询相应大核中小核的数目,觉得很有用,以后编程序可以借鉴,摘抄如下:

[cpp] view plain copy
  1. // Beginning of GPU Architecture definitions  
  2. inline int _ConvertSMVer2Cores(int major, int minor)  
  3. {  
  4.     // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM  
  5.     typedef struct  
  6.     {  
  7.         int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version  
  8.         int Cores;  
  9.     } sSMtoCores;  
  10.   
  11.     sSMtoCores nGpuArchCoresPerSM[] =  
  12.     {  
  13.         { 0x10,  8 }, // Tesla Generation (SM 1.0) G80 class  
  14.         { 0x11,  8 }, // Tesla Generation (SM 1.1) G8x class  
  15.         { 0x12,  8 }, // Tesla Generation (SM 1.2) G9x class  
  16.         { 0x13,  8 }, // Tesla Generation (SM 1.3) GT200 class  
  17.         { 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class  
  18.         { 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class  
  19.         { 0x30, 192}, // Kepler Generation (SM 3.0) GK10x class  
  20.         { 0x35, 192}, // Kepler Generation (SM 3.5) GK11x class  
  21.         {   -1, -1 }  
  22.     };  
  23.   
  24.     int index = 0;  
  25.   
  26.     while (nGpuArchCoresPerSM[index].SM != -1)  
  27.     {  
  28.         if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor))  
  29.         {  
  30.             return nGpuArchCoresPerSM[index].Cores;  
  31.         }  
  32.   
  33.         index++;  
  34.     }  
  35.   
  36.     // If we don't find the values, we default use the previous one to run properly  
  37.     printf("MapSMtoCores for SM %d.%d is undefined.  Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[7].Cores);  
  38.     return nGpuArchCoresPerSM[7].Cores;  
  39. }  
  40. // end of GPU Architecture definitions  


可见,设备版本2.1的一个大核有48个小核,而版本3.0以上的一个大核有192个小核!

前文说到过,当我们用的电脑上有多个显卡支持CUDA时,怎么来区分在哪个上运行呢?这里我们看一下addWithCuda这个函数是怎么做的。

[cpp] view plain copy
  1. cudaError_t cudaStatus;  
  2.   
  3. // Choose which GPU to run on, change this on a multi-GPU system.  
  4. cudaStatus = cudaSetDevice(0);  
  5. if (cudaStatus != cudaSuccess) {  
  6.     fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  7.     goto Error;  
  8. }  


使用了cudaSetDevice(0)这个操作,0表示能搜索到的第一个设备号,如果有多个设备,则编号为0,1,2...。

再看我们本节添加的代码,有个函数cudaGetDeviceCount(&num),这个函数用来获取设备总数,这样我们选择运行CUDA程序的设备号取值就是0,1,...num-1,于是可以一个个枚举设备,利用cudaGetDeviceProperties(&prop)获得其属性,然后利用一定排序、筛选算法,找到最符合我们应用的那个设备号opt,然后调用cudaSetDevice(opt)即可选择该设备。选择标准可以从处理能力、、名称等各个角度出发。后面讲述流并发过程时,还要用到这些API。

如果希望了解更多硬件内容可以结合获取。

多线程我们应该都不陌生,在操作系统中,进程是资源分配的基本单元,而线程是CPU时间调度的基本单元(这里假设只有1个CPU)。

将线程的概念引申到CUDA程序设计中,我们可以认为线程就是执行CUDA程序的最小单元,前面我们建立的工程代码中,有个核函数概念不知各位童鞋还记得没有,在GPU上每个线程都会运行一次该核函数。

但GPU上的线程调度方式与CPU有很大不同。CPU上会有优先级分配,从高到低,同样优先级的可以采用时间片轮转法实现线程调度。GPU上线程没有优先级概念,所有线程机会均等,线程状态只有等待资源和执行两种状态,如果资源未就绪,那么就等待;一旦就绪,立即执行。当GPU资源很充裕时,所有线程都是并发执行的,这样加速效果很接近理论加速比;而GPU资源少于总线程个数时,有一部分线程就会等待前面执行的线程释放资源,从而变为串行化执行。

代码还是用上一节的吧,改动很少,再贴一遍:

[cpp] view plain copy
  1. #include "cuda_runtime.h"           //CUDA运行时API  
  2. #include "device_launch_parameters.h"     
  3. #include   
  4. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);  
  5. __global__ void addKernel(int *c, const int *a, const int *b)  
  6. {  
  7.     int i = threadIdx.x;  
  8.     c[i] = a[i] + b[i];  
  9. }  
  10. int main()  
  11. {  
  12.     const int arraySize = 5;  
  13.     const int a[arraySize] = { 1, 2, 3, 4, 5 };  
  14.     const int b[arraySize] = { 10, 20, 30, 40, 50 };  
  15.     int c[arraySize] = { 0 };  
  16.     // Add vectors in parallel.  
  17.     cudaError_t cudaStatus;  
  18.     int num = 0;  
  19.     cudaDeviceProp prop;  
  20.     cudaStatus = cudaGetDeviceCount(&num);  
  21.     for(int i = 0;i
  22.     {  
  23.         cudaGetDeviceProperties(&prop,i);  
  24.     }  
  25.     cudaStatus = addWithCuda(c, a, b, arraySize);  
  26.     if (cudaStatus != cudaSuccess)   
  27.     {  
  28.         fprintf(stderr, "addWithCuda failed!");  
  29.         return 1;  
  30.     }  
  31.     printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",c[0],c[1],c[2],c[3],c[4]);  
  32.     // cudaThreadExit must be called before exiting in order for profiling and  
  33.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  34.     cudaStatus = cudaThreadExit();  
  35.     if (cudaStatus != cudaSuccess)   
  36.     {  
  37.         fprintf(stderr, "cudaThreadExit failed!");  
  38.         return 1;  
  39.     }  
  40.     return 0;  
  41. }  
  42. // 重点理解这个函数  
  43. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)  
  44. {  
  45.     int *dev_a = 0; //GPU设备端数据指针  
  46.     int *dev_b = 0;  
  47.     int *dev_c = 0;  
  48.     cudaError_t cudaStatus;     //状态指示  
  49.   
  50.     // Choose which GPU to run on, change this on a multi-GPU system.  
  51.     cudaStatus = cudaSetDevice(0);  //选择运行平台  
  52.     if (cudaStatus != cudaSuccess)   
  53.     {  
  54.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  55.         goto Error;  
  56.     }  
  57.     // 分配GPU设备端内存  
  58.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  59.     if (cudaStatus != cudaSuccess)   
  60.     {  
  61.         fprintf(stderr, "cudaMalloc failed!");  
  62.         goto Error;  
  63.     }  
  64.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  65.     if (cudaStatus != cudaSuccess)   
  66.     {  
  67.         fprintf(stderr, "cudaMalloc failed!");  
  68.         goto Error;  
  69.     }  
  70.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  71.     if (cudaStatus != cudaSuccess)   
  72.     {  
  73.         fprintf(stderr, "cudaMalloc failed!");  
  74.         goto Error;  
  75.     }  
  76.     // 拷贝数据到GPU  
  77.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  78.     if (cudaStatus != cudaSuccess)   
  79.     {  
  80.         fprintf(stderr, "cudaMemcpy failed!");  
  81.         goto Error;  
  82.     }  
  83.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  84.     if (cudaStatus != cudaSuccess)   
  85.     {  
  86.         fprintf(stderr, "cudaMemcpy failed!");  
  87.         goto Error;  
  88.     }  
  89.     // 运行核函数  
  90. "BACKGROUND-COLOR: #ff6666">    addKernel<<<1, size>>>(dev_c, dev_a, dev_b);  
  91.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  92.     // any errors encountered during the launch.  
  93.     cudaStatus = cudaThreadSynchronize();   //同步线程  
  94.     if (cudaStatus != cudaSuccess)   
  95.     {  
  96.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  97.         goto Error;  
  98.     }  
  99.     // Copy output vector from GPU buffer to host memory.  
  100.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);      //拷贝结果回主机  
  101.     if (cudaStatus != cudaSuccess)   
  102.     {  
  103.         fprintf(stderr, "cudaMemcpy failed!");  
  104.         goto Error;  
  105.     }  
  106. Error:  
  107.     cudaFree(dev_c);    //释放GPU设备端内存  
  108.     cudaFree(dev_a);  
  109.     cudaFree(dev_b);      
  110.     return cudaStatus;  
  111. }  


红色部分即启动核函数的调用过程,这里看到调用方式和C不太一样。<<<>>>表示运行时配置符号,里面1表示只分配一个线程组(又称线程块、Block),size表示每个线程组有size个线程(Thread)。本程序中size根据前面传递参数个数应该为5,所以运行的时候,核函数在5个GPU线程单元上分别运行了一次,总共运行了5次。这5个线程是如何知道自己“身份”的?是靠threadIdx这个内置变量,它是个dim3类型变量,接受<<<>>>中第二个参数,它包含x,y,z 3维坐标,而我们传入的参数只有一维,所以只有x值是有效的。通过核函数中int i = threadIdx.x;这一句,每个线程可以获得自身的id号,从而找到自己的任务去执行。

CUDA从入门到精通(六):块并行

 

同一版本的代码用了这么多次,有点过意不去,于是这次我要做较大的改动大笑,大家要擦亮眼睛,拭目以待。

块并行相当于操作系统中多进程的情况,上节说到,CUDA有线程组(线程块)的概念,将一组线程组织到一起,共同分配一部分资源,然后内部调度执行。线程块与线程块之间,毫无瓜葛。这有利于做更粗粒度的并行。我们将上一节的代码改为块并行版本如下:

下节我们介绍块并行。

[cpp] view plain copy
  1. #include "cuda_runtime.h"  
  2. #include "device_launch_parameters.h"  
  3. #include   
  4. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);  
  5. __global__ void addKernel(int *c, const int *a, const int *b)  
  6. {  
  7. "BACKGROUND-COLOR: #ff0000">    int i = blockIdx.x;  
  8.     c[i] = a[i] + b[i];  
  9. }  
  10. int main()  
  11. {  
  12.     const int arraySize = 5;  
  13.     const int a[arraySize] = { 1, 2, 3, 4, 5 };  
  14.     const int b[arraySize] = { 10, 20, 30, 40, 50 };  
  15.     int c[arraySize] = { 0 };  
  16.     // Add vectors in parallel.  
  17.     cudaError_t cudaStatus;  
  18.     int num = 0;  
  19.     cudaDeviceProp prop;  
  20.     cudaStatus = cudaGetDeviceCount(&num);  
  21.     for(int i = 0;i
  22.     {  
  23.         cudaGetDeviceProperties(&prop,i);  
  24.     }  
  25.     cudaStatus = addWithCuda(c, a, b, arraySize);  
  26.     if (cudaStatus != cudaSuccess)   
  27.     {  
  28.         fprintf(stderr, "addWithCuda failed!");  
  29.         return 1;  
  30.     }  
  31.     printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",c[0],c[1],c[2],c[3],c[4]);  
  32.     // cudaThreadExit must be called before exiting in order for profiling and  
  33.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  34.     cudaStatus = cudaThreadExit();  
  35.     if (cudaStatus != cudaSuccess)   
  36.     {  
  37.         fprintf(stderr, "cudaThreadExit failed!");  
  38.         return 1;  
  39.     }  
  40.     return 0;  
  41. }  
  42. // Helper function for using CUDA to add vectors in parallel.  
  43. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)  
  44. {  
  45.     int *dev_a = 0;  
  46.     int *dev_b = 0;  
  47.     int *dev_c = 0;  
  48.     cudaError_t cudaStatus;  
  49.   
  50.     // Choose which GPU to run on, change this on a multi-GPU system.  
  51.     cudaStatus = cudaSetDevice(0);  
  52.     if (cudaStatus != cudaSuccess)   
  53.     {  
  54.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  55.         goto Error;  
  56.     }  
  57.     // Allocate GPU buffers for three vectors (two input, one output)    .  
  58.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  59.     if (cudaStatus != cudaSuccess)   
  60.     {  
  61.         fprintf(stderr, "cudaMalloc failed!");  
  62.         goto Error;  
  63.     }  
  64.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  65.     if (cudaStatus != cudaSuccess)   
  66.     {  
  67.         fprintf(stderr, "cudaMalloc failed!");  
  68.         goto Error;  
  69.     }  
  70.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  71.     if (cudaStatus != cudaSuccess)   
  72.     {  
  73.         fprintf(stderr, "cudaMalloc failed!");  
  74.         goto Error;  
  75.     }  
  76.     // Copy input vectors from host memory to GPU buffers.  
  77.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  78.     if (cudaStatus != cudaSuccess)   
  79.     {  
  80.         fprintf(stderr, "cudaMemcpy failed!");  
  81.         goto Error;  
  82.     }  
  83.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  84.     if (cudaStatus != cudaSuccess)   
  85.     {  
  86.         fprintf(stderr, "cudaMemcpy failed!");  
  87.         goto Error;  
  88.     }  
  89.     // Launch a kernel on the GPU with one thread for each element.  
  90.  "BACKGROUND-COLOR: #ff0000">   addKernel<<>>(dev_c, dev_a, dev_b);  
  91.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  92.     // any errors encountered during the launch.  
  93.     cudaStatus = cudaThreadSynchronize();  
  94.     if (cudaStatus != cudaSuccess)   
  95.     {  
  96.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  97.         goto Error;  
  98.     }  
  99.     // Copy output vector from GPU buffer to host memory.  
  100.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  101.     if (cudaStatus != cudaSuccess)   
  102.     {  
  103.         fprintf(stderr, "cudaMemcpy failed!");  
  104.         goto Error;  
  105.     }  
  106. Error:  
  107.     cudaFree(dev_c);  
  108.     cudaFree(dev_a);  
  109.     cudaFree(dev_b);      
  110.     return cudaStatus;  
  111. }  


和上一节相比,只有这两行有改变,<<<>>>里第一个参数改成了size,第二个改成了1,表示我们分配size个线程块,每个线程块仅包含1个线程,总共还是有5个线程。这5个线程相互独立,执行核函数得到相应的结果,与上一节不同的是,每个线程获取id的方式变为int i = blockIdx.x;这是线程块ID。

于是有童鞋提问了,线程并行和块并行的区别在哪里?

线程并行是细粒度并行,调度效率高;块并行是粗粒度并行,每次调度都要重新分配资源,有时资源只有一份,那么所有线程块都只能排成一队,串行执行。

那是不是我们所有时候都应该用线程并行,尽可能不用块并行?

当然不是,我们的任务有时可以采用分治法,将一个大问题分解为几个小规模问题,将这些小规模问题分别用一个线程块实现,线程块内可以采用细粒度的线程并行,而块之间为粗粒度并行,这样可以充分利用硬件资源,降低线程并行的计算复杂度。适当分解,降低规模,在一些矩阵乘法、向量内积计算应用中可以得到充分的展示。

实际应用中,常常是二者的结合。线程块、线程组织图如下所示。

多个线程块组织成了一个Grid,称为线程格(经历了从一位线程,二维线程块到三维线程格的过程,立体感很强啊)。

好了,下一节我们介绍流并行,是更高层次的并行。

前面我们没有讲程序的结构,我想有些童鞋可能迫不及待想知道CUDA程序到底是怎么一个执行过程。好的,这一节在介绍流之前,先把CUDA程序结构简要说一下。

CUDA程序文件后缀为.cu,有些编译器可能不认识这个后缀的文件,我们可以在VS2008的Tools->Options->Text Editor->File Extension里添加cu后缀到VC++中,如下图:

一个.cu文件内既包含CPU程序(称为主机程序),也包含GPU程序(称为设备程序)。如何区分主机程序和设备程序?根据声明,凡是挂有“__global__”或者“__device__”前缀的函数,都是在GPU上运行的设备程序,不同的是__global__设备程序可被主机程序调用,而__device__设备程序则只能被设备程序调用。

没有挂任何前缀的函数,都是主机程序。主机程序显示声明可以用__host__前缀。设备程序需要由NVCC进行编译,而主机程序只需要由主机编译器(如VS2008中的cl.exe,上的GCC)。主机程序主要完成设备环境初始化,数据传输等必备过程,设备程序只负责计算。

主机程序中,有一些“cuda”打头的函数,这些都是CUDA Runtime API,即运行时函数,主要负责完成设备的初始化、内存分配、内存拷贝等任务。我们前面第三节用到的函数cudaGetDeviceCount(),cudaGetDeviceProperties(),cudaSetDevice()都是运行时API。这些函数的具体参数声明我们不必一一记下来,拿出第三节的官方利器就可以轻松查询,让我们打开这个文件:

打开后,在pdf搜索栏中输入一个运行时函数,例如cudaMemcpy,查到的结果如下:

可以看到,该API函数的参数形式为,第一个表示目的地,第二个表示来源地,第三个参数表示字节数,第四个表示类型。如果对类型不了解,直接点击超链接,得到详细解释如下:

可见,该API可以实现从主机到主机、主机到设备、设备到主机、设备到设备的内存拷贝过程。同时可以发现,利用该API手册可以很方便地查询我们需要用的这些API函数,所以以后编CUDA程序一定要把它打开,随时准备查询,这样可以大大提高编程效率。

好了,进入今天的主题:流并行。

前面已经介绍了线程并行和块并行,知道了线程并行为细粒度的并行,而块并行为粗粒度的并行,同时也知道了CUDA的线程组织情况,即Grid-Block-Thread结构。一组线程并行处理可以组织为一个block,而一组block并行处理可以组织为一个Grid,很自然地想到,Grid只是一个网格,我们是否可以利用多个网格来完成并行处理呢?答案就是利用流。

流可以实现在一个设备上运行多个核函数。前面的块并行也好,线程并行也好,运行的核函数都是相同的(代码一样,传递参数也一样)。而流并行,可以执行不同的核函数,也可以实现对同一个核函数传递不同的参数,实现任务级别的并行。

CUDA中的流用cudaStream_t类型实现,用到的API有以下几个:cudaStreamCreate(cudaStream_t * s)用于创建流,cudaStreamDestroy(cudaStream_t s)用于销毁流,cudaStreamSynchronize()用于单个流同步,cudaDeviceSynchronize()用于整个设备上的所有流同步,cudaStreamQuery()用于查询一个流的任务是否已经完成。具体的含义可以查询API手册。

下面我们将前面的两个例子中的任务改用流实现,仍然是{1,2,3,4,5}+{10,20,30,40,50} = {11,22,33,44,55}这个例子。代码如下:

[cpp] view plain copy
  1. #include "cuda_runtime.h"  
  2. #include "device_launch_parameters.h"  
  3. #include   
  4. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);  
  5. __global__ void addKernel(int *c, const int *a, const int *b)  
  6. {  
  7.     int i = blockIdx.x;  
  8.     c[i] = a[i] + b[i];  
  9. }  
  10. int main()  
  11. {  
  12.     const int arraySize = 5;  
  13.     const int a[arraySize] = { 1, 2, 3, 4, 5 };  
  14.     const int b[arraySize] = { 10, 20, 30, 40, 50 };  
  15.     int c[arraySize] = { 0 };  
  16.     // Add vectors in parallel.  
  17.     cudaError_t cudaStatus;  
  18.     int num = 0;  
  19.     cudaDeviceProp prop;  
  20.     cudaStatus = cudaGetDeviceCount(&num);  
  21.     for(int i = 0;i
  22.     {  
  23.         cudaGetDeviceProperties(&prop,i);  
  24.     }  
  25.     cudaStatus = addWithCuda(c, a, b, arraySize);  
  26.     if (cudaStatus != cudaSuccess)   
  27.     {  
  28.         fprintf(stderr, "addWithCuda failed!");  
  29.         return 1;  
  30.     }  
  31.     printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",c[0],c[1],c[2],c[3],c[4]);  
  32.     // cudaThreadExit must be called before exiting in order for profiling and  
  33.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  34.     cudaStatus = cudaThreadExit();  
  35.     if (cudaStatus != cudaSuccess)   
  36.     {  
  37.         fprintf(stderr, "cudaThreadExit failed!");  
  38.         return 1;  
  39.     }  
  40.     return 0;  
  41. }  
  42. // Helper function for using CUDA to add vectors in parallel.  
  43. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)  
  44. {  
  45.     int *dev_a = 0;  
  46.     int *dev_b = 0;  
  47.     int *dev_c = 0;  
  48.     cudaError_t cudaStatus;  
  49.   
  50.     // Choose which GPU to run on, change this on a multi-GPU system.  
  51.     cudaStatus = cudaSetDevice(0);  
  52.     if (cudaStatus != cudaSuccess)   
  53.     {  
  54.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  55.         goto Error;  
  56.     }  
  57.     // Allocate GPU buffers for three vectors (two input, one output)    .  
  58.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  59.     if (cudaStatus != cudaSuccess)   
  60.     {  
  61.         fprintf(stderr, "cudaMalloc failed!");  
  62.         goto Error;  
  63.     }  
  64.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  65.     if (cudaStatus != cudaSuccess)   
  66.     {  
  67.         fprintf(stderr, "cudaMalloc failed!");  
  68.         goto Error;  
  69.     }  
  70.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  71.     if (cudaStatus != cudaSuccess)   
  72.     {  
  73.         fprintf(stderr, "cudaMalloc failed!");  
  74.         goto Error;  
  75.     }  
  76.     // Copy input vectors from host memory to GPU buffers.  
  77.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  78.     if (cudaStatus != cudaSuccess)   
  79.     {  
  80.         fprintf(stderr, "cudaMemcpy failed!");  
  81.         goto Error;  
  82.     }  
  83.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  84.     if (cudaStatus != cudaSuccess)   
  85.     {  
  86.         fprintf(stderr, "cudaMemcpy failed!");  
  87.         goto Error;  
  88.     }  
  89. "BACKGROUND-COLOR: #ff6666">  cudaStream_t stream[5];  
  90.     for(int i = 0;i<5;i++)  
  91.     {  
  92.         cudaStreamCreate(&stream[i]);   //创建流  
  93.     }  
  94.     // Launch a kernel on the GPU with one thread for each element.  
  95. "BACKGROUND-COLOR: #ff6666">  for(int i = 0;i<5;i++)  
  96.     {  
  97.         addKernel<<<1,1,0,stream[i]>>>(dev_c+i, dev_a+i, dev_b+i);    //执行流  
  98.     }  
  99.     cudaDeviceSynchronize();  
  100.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  101.     // any errors encountered during the launch.  
  102.     cudaStatus = cudaThreadSynchronize();  
  103.     if (cudaStatus != cudaSuccess)   
  104.     {  
  105.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  106.         goto Error;  
  107.     }  
  108.     // Copy output vector from GPU buffer to host memory.  
  109.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  110.     if (cudaStatus != cudaSuccess)   
  111.     {  
  112.         fprintf(stderr, "cudaMemcpy failed!");  
  113.         goto Error;  
  114.     }  
  115. Error:  
  116. "BACKGROUND-COLOR: #ff6666">  for(int i = 0;i<5;i++)  
  117.     {  
  118.         cudaStreamDestroy(stream[i]);   //销毁流  
  119.     }  
  120.     cudaFree(dev_c);  
  121.     cudaFree(dev_a);  
  122.     cudaFree(dev_b);      
  123.     return cudaStatus;  
  124. }  


注意到,我们的核函数代码仍然和块并行的版本一样,只是在调用时做了改变,<<<>>>中的参数多了两个,其中前两个和块并行、线程并行中的意义相同,仍然是线程块数(这里为1)、每个线程块中线程数(这里也是1)。第三个为0表示每个block用到的共享内存大小,这个我们后面再讲;第四个为流对象,表示当前核函数在哪个流上运行。我们创建了5个流,每个流上都装载了一个核函数,同时传递参数有些不同,也就是每个核函数作用的对象也不同。这样就实现了任务级别的并行,当我们有几个互不相关的任务时,可以写多个核函数,资源允许的情况下,我们将这些核函数装载到不同流上,然后执行,这样可以实现更粗粒度的并行。

好了,流并行就这么简单,我们处理任务时,可以根据需要,选择最适合的并行方式。

我们前面几节主要介绍了三种利用GPU实现并行处理的方式:线程并行,块并行和流并行。在这些方法中,我们一再强调,各个线程所进行的处理是互不相关的,即两个线程不回产生交集,每个线程都只关注自己的一亩三分地,对其他线程毫无兴趣,就当不存在。。。。

当然,实际应用中,这样的例子太少了,也就是遇到向量相加、向量对应点乘这类才会有如此高的并行度,而其他一些应用,如一组数求和,求最大(小)值,各个线程不再是相互独立的,而是产生一定关联,线程2可能会用到线程1的结果,这时就需要利用本节的线程通信技术了。

线程通信在CUDA中有三种实现方式:

1. 共享存储器;

2. 线程 同步;

3. 原子操作;

最常用的是前两种方式,共享存储器,术语Shared Memory,是位于SM中的特殊存储器。还记得SM吗,就是流多处理器,大核是也。一个SM中不仅包含若干个SP(流处理器,小核),还包括一部分高速Cache,寄存器组,共享内存等,结构如图所示:

从图中可看出,一个SM内有M个SP,Shared Memory由这M个SP共同占有。另外指令单元也被这M个SP共享,即SIMT(单指令多线程架构),一个SM中所有SP在同一时间执行同一代码。

为了实现线程通信,仅仅靠共享内存还不够,需要有同步机制才能使线程之间实现有序处理。通常情况是这样:当线程A需要线程B计算的结果作为输入时,需要确保线程B已经将结果写入共享内存中,然后线程A再从共享内存中读出。同步必不可少,否则,线程A可能读到的是无效的结果,造成计算错误。同步机制可以用CUDA内置函数:__syncthreads();当某个线程执行到该函数时,进入等待状态,直到同一线程块(Block)中所有线程都执行到这个函数为止,即一个__syncthreads()相当于一个线程同步点,确保一个Block中所有线程都达到同步,然后线程进入运行状态。

综上两点,我们可以写一段线程通信的伪代码如下:

[cpp] view plain copy
  1. //Begin  
  2. if this is thread B  
  3.      write something to Shared Memory;  
  4. end if  
  5. __syncthreads();  
  6. if this is thread A  
  7.     read something from Shared Memory;  
  8. end if  
  9. //End  


上面代码在CUDA中实现时,由于SIMT特性,所有线程都执行同样的代码,所以在线程中需要判断自己的身份,以免误操作。

注意的是,位于同一个Block中的线程才能实现通信,不同Block中的线程不能通过共享内存、同步进行通信,而应采用原子操作或主机介入。

对于原子操作,如果感兴趣可以翻阅《GPU高性能编程CUDA实战》第九章“原子性”。

本节完。下节我们给出一个实例来看线程通信的代码怎么设计。

接着上一节,我们利用刚学到的共享内存和线程同步技术,来做一个简单的例子。先看下效果吧:

很简单,就是分别求出1~5这5个数字的和,平方和,连乘积。相信学过的童鞋都能用for循环做出同上面一样的效果,但为了学习CUDA共享内存和同步技术,我们还是要把简单的东西复杂化(^_^)。

简要分析一下,上面例子的输入都是一样的,1,2,3,4,5这5个数,但计算过程有些变化,而且每个输出和所有输入都相关,不是前几节例子中那样,一个输出只和一个输入有关。所以我们在利用CUDA编程时,需要针对特殊问题做些让步,把一些步骤串行化实现。

输入数据原本位于主机内存,通过cudaMemcpy API已经拷贝到GPU显存(术语为全局存储器,Global Memory),每个线程运行时需要从Global Memory读取输入数据,然后完成计算,最后将结果写回Global Memory。当我们计算需要多次相同输入数据时,大家可能想到,每次都分别去Global Memory读数据好像有点浪费,如果数据很大,那么反复多次读数据会相当耗时间。索性我们把它从Global Memory一次性读到SM内部,然后在内部进行处理,这样可以节省反复读取的时间。

有了这个思路,结合上节看到的SM结构图,看到有一片存储器叫做Shared Memory,它位于SM内部,处理时访问速度相当快(差不多每个时钟周期读一次),而全局存储器读一次需要耗费几十甚至上百个时钟周期。于是,我们就制定A计划如下:

线程块数:1,块号为0;(只有一个线程块内的线程才能进行通信,所以我们只分配一个线程块,具体工作交给每个线程完成)

线程数:5,线程号分别为0~4;(线程并行,前面讲过)

共享存储器大小:5个int型变量大小(5 * sizeof(int))。

步骤一:读取输入数据。将Global Memory中的5个整数读入共享存储器,位置一一对应,和线程号也一一对应,所以可以同时完成。

步骤二:线程同步,确保所有线程都完成了工作。

步骤三:指定线程,对共享存储器中的输入数据完成相应处理。

代码如下:

[cpp] view plain copy
  1. #include "cuda_runtime.h"  
  2. #include "device_launch_parameters.h"  
  3.   
  4. #include   
  5.   
  6. cudaError_t addWithCuda(int *c, const int *a, size_t size);  
  7.   
  8. __global__ void addKernel(int *c, const int *a)  
  9. {  
  10.     int i = threadIdx.x;  
  11. "font-size:24px;">  extern __shared__ int smem[];  
  12.    smem[i] = a[i];  
  13.     __syncthreads();  
  14.     if(i == 0)  // 0号线程做平方和  
  15.     {  
  16.         c[0] = 0;  
  17.         for(int d = 0; d < 5; d++)  
  18.         {  
  19.             c[0] += smem[d] * smem[d];  
  20.         }  
  21.     }  
  22.     if(i == 1)//1号线程做累加  
  23.     {  
  24.         c[1] = 0;  
  25.         for(int d = 0; d < 5; d++)  
  26.         {  
  27.             c[1] += smem[d];  
  28.         }  
  29.     }  
  30.     if(i == 2)  //2号线程做累乘  
  31.     {  
  32.         c[2] = 1;  
  33.         for(int d = 0; d < 5; d++)  
  34.         {  
  35.             c[2] *= smem[d];  
  36.         }  
  37.     }  
  38. }  
  39.   
  40. int main()  
  41. {  
  42.     const int arraySize = 5;  
  43.     const int a[arraySize] = { 1, 2, 3, 4, 5 };  
  44.     int c[arraySize] = { 0 };  
  45.     // Add vectors in parallel.  
  46.     cudaError_t cudaStatus = addWithCuda(c, a, arraySize);  
  47.     if (cudaStatus != cudaSuccess)   
  48.     {  
  49.         fprintf(stderr, "addWithCuda failed!");  
  50.         return 1;  
  51.     }  
  52.     printf("\t1+2+3+4+5 = %d\n\t1^2+2^2+3^2+4^2+5^2 = %d\n\t1*2*3*4*5 = %d\n\n\n\n\n\n", c[1], c[0], c[2]);  
  53.     // cudaThreadExit must be called before exiting in order for profiling and  
  54.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  55.     cudaStatus = cudaThreadExit();  
  56.     if (cudaStatus != cudaSuccess)   
  57.     {  
  58.         fprintf(stderr, "cudaThreadExit failed!");  
  59.         return 1;  
  60.     }  
  61.     return 0;  
  62. }  
  63.   
  64. // Helper function for using CUDA to add vectors in parallel.  
  65. cudaError_t addWithCuda(int *c, const int *a,  size_t size)  
  66. {  
  67.     int *dev_a = 0;  
  68.     int *dev_c = 0;  
  69.     cudaError_t cudaStatus;  
  70.   
  71.     // Choose which GPU to run on, change this on a multi-GPU system.  
  72.     cudaStatus = cudaSetDevice(0);  
  73.     if (cudaStatus != cudaSuccess)   
  74.     {  
  75.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  76.         goto Error;  
  77.     }  
  78.   
  79.     // Allocate GPU buffers for three vectors (two input, one output)    .  
  80.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  81.     if (cudaStatus != cudaSuccess)   
  82.     {  
  83.         fprintf(stderr, "cudaMalloc failed!");  
  84.         goto Error;  
  85.     }  
  86.   
  87.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  88.     if (cudaStatus != cudaSuccess)   
  89.     {  
  90.         fprintf(stderr, "cudaMalloc failed!");  
  91.         goto Error;  
  92.     }  
  93.     // Copy input vectors from host memory to GPU buffers.  
  94.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  95.     if (cudaStatus != cudaSuccess)   
  96.     {  
  97.         fprintf(stderr, "cudaMemcpy failed!");  
  98.         goto Error;  
  99.     }  
  100.     // Launch a kernel on the GPU with one thread for each element.  
  101. "font-size:24px;">    addKernel<<<1, size, size * sizeof(int), 0>>>(dev_c, dev_a);  
  102.   
  103.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  104.     // any errors encountered during the launch.  
  105.     cudaStatus = cudaThreadSynchronize();  
  106.     if (cudaStatus != cudaSuccess)   
  107.     {  
  108.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  109.         goto Error;  
  110.     }  
  111.   
  112.     // Copy output vector from GPU buffer to host memory.  
  113.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  114.     if (cudaStatus != cudaSuccess)   
  115.     {  
  116.         fprintf(stderr, "cudaMemcpy failed!");  
  117.         goto Error;  
  118.     }  
  119.   
  120. Error:  
  121.     cudaFree(dev_c);  
  122.     cudaFree(dev_a);      
  123.     return cudaStatus;  
  124. }  
从代码中看到执行配置<<<>>>中第三个参数为共享内存大小(字节数),这样我们就知道了全部4个执行配置参数的意义。恭喜,你的CUDA终于入门了!


入门后的进一步学习的内容,就是如何优化自己的代码。我们前面的例子没有考虑任何性能方面优化,是为了更好地学习基本知识点,而不是其他细节问题。从本节开始,我们要从性能出发考虑问题,不断优化代码,使执行速度提高是并行处理的唯一目的。


测试代码运行速度有很多方法,里提供了类似于SystemTime()这样的API获得系统时间,然后计算两个事件之间的时长从而完成计时功能。在CUDA中,我们有专门测量设备运行时间的API,下面一一介绍。

翻开编程手册《CUDA_Toolkit_Reference_Manual》,随时准备查询不懂得API。我们在运行核函数前后,做如下操作:

[cpp] view plain copy
  1. cudaEvent_t start, stop;"white-space:pre">  //事件对象  
  2. cudaEventCreate(&start);"white-space:pre">  //创建事件  
  3. cudaEventCreate(&stop);"white-space:pre">       //创建事件  
  4. cudaEventRecord(start, stream);"white-space:pre">   //记录开始  
  5. myKernel<<>>(parameter list);//执行核函数  
  6.   
  7. cudaEventRecord(stop,stream);"white-space:pre"//记录结束事件  
  8. cudaEventSynchronize(stop);"white-space:pre">   //事件同步,等待结束事件之前的设备操作均已完成  
  9. float elapsedTime;  
  10. cudaEventElapsedTime(&elapsedTime,start,stop);//计算两个事件之间时长(单位为ms)  


核函数执行时间将被保存在变量elapsedTime中。通过这个值我们可以评估算法的性能。下面给一个例子,来看怎么使用计时功能。

前面的例子规模很小,只有5个元素,处理量太小不足以计时,下面将规模扩大为1024,此外将反复运行1000次计算总时间,这样估计不容易受随机扰动影响。我们通过这个例子对比线程并行和块并行的性能如何。代码如下:

[cpp] view plain copy
  1. #include "cuda_runtime.h"  
  2. #include "device_launch_parameters.h"  
  3. #include   
  4. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);  
  5. __global__ void addKernel_blk(int *c, const int *a, const int *b)  
  6. {  
  7.     int i = blockIdx.x;  
  8.     c[i] = a[i]+ b[i];  
  9. }  
  10. __global__ void addKernel_thd(int *c, const int *a, const int *b)  
  11. {  
  12.     int i = threadIdx.x;  
  13.     c[i] = a[i]+ b[i];  
  14. }  
  15. int main()  
  16. {  
  17.     const int arraySize = 1024;  
  18.     int a[arraySize] = {0};  
  19.     int b[arraySize] = {0};  
  20.     for(int i = 0;i
  21.     {  
  22.         a[i] = i;  
  23.         b[i] = arraySize-i;  
  24.     }  
  25.     int c[arraySize] = {0};  
  26.     // Add vectors in parallel.  
  27.     cudaError_t cudaStatus;  
  28.     int num = 0;  
  29.     cudaDeviceProp prop;  
  30.     cudaStatus = cudaGetDeviceCount(&num);  
  31.     for(int i = 0;i
  32.     {  
  33.         cudaGetDeviceProperties(&prop,i);  
  34.     }  
  35.     cudaStatus = addWithCuda(c, a, b, arraySize);  
  36.     if (cudaStatus != cudaSuccess)   
  37.     {  
  38.         fprintf(stderr, "addWithCuda failed!");  
  39.         return 1;  
  40.     }  
  41.   
  42.     // cudaThreadExit must be called before exiting in order for profiling and  
  43.     // tracing tools such as Nsight and Visual Profiler to show complete traces.  
  44.     cudaStatus = cudaThreadExit();  
  45.     if (cudaStatus != cudaSuccess)   
  46.     {  
  47.         fprintf(stderr, "cudaThreadExit failed!");  
  48.         return 1;  
  49.     }  
  50.     for(int i = 0;i
  51.     {  
  52.         if(c[i] != (a[i]+b[i]))  
  53.         {  
  54.             printf("Error in %d\n",i);  
  55.         }  
  56.     }  
  57.     return 0;  
  58. }  
  59. // Helper function for using CUDA to add vectors in parallel.  
  60. cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)  
  61. {  
  62.     int *dev_a = 0;  
  63.     int *dev_b = 0;  
  64.     int *dev_c = 0;  
  65.     cudaError_t cudaStatus;  
  66.   
  67.     // Choose which GPU to run on, change this on a multi-GPU system.  
  68.     cudaStatus = cudaSetDevice(0);  
  69.     if (cudaStatus != cudaSuccess)   
  70.     {  
  71.         fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");  
  72.         goto Error;  
  73.     }  
  74.     // Allocate GPU buffers for three vectors (two input, one output)    .  
  75.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  76.     if (cudaStatus != cudaSuccess)   
  77.     {  
  78.         fprintf(stderr, "cudaMalloc failed!");  
  79.         goto Error;  
  80.     }  
  81.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  82.     if (cudaStatus != cudaSuccess)   
  83.     {  
  84.         fprintf(stderr, "cudaMalloc failed!");  
  85.         goto Error;  
  86.     }  
  87.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  88.     if (cudaStatus != cudaSuccess)   
  89.     {  
  90.         fprintf(stderr, "cudaMalloc failed!");  
  91.         goto Error;  
  92.     }  
  93.     // Copy input vectors from host memory to GPU buffers.  
  94.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  95.     if (cudaStatus != cudaSuccess)   
  96.     {  
  97.         fprintf(stderr, "cudaMemcpy failed!");  
  98.         goto Error;  
  99.     }  
  100.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  101.     if (cudaStatus != cudaSuccess)   
  102.     {  
  103.         fprintf(stderr, "cudaMemcpy failed!");  
  104.         goto Error;  
  105.     }  
  106.     cudaEvent_t start,stop;  
  107.     cudaEventCreate(&start);  
  108.     cudaEventCreate(&stop);  
  109.     cudaEventRecord(start,0);  
  110.     for(int i = 0;i<1000;i++)  
  111.     {  
  112. //      addKernel_blk<<>>(dev_c, dev_a, dev_b);  
  113.         addKernel_thd<<<1,size>>>(dev_c, dev_a, dev_b);  
  114.     }  
  115.     cudaEventRecord(stop,0);  
  116.     cudaEventSynchronize(stop);  
  117.     float tm;  
  118.     cudaEventElapsedTime(&tm,start,stop);  
  119.     printf("GPU Elapsed time:%.6f ms.\n",tm);  
  120.     // cudaThreadSynchronize waits for the kernel to finish, and returns  
  121.     // any errors encountered during the launch.  
  122.     cudaStatus = cudaThreadSynchronize();  
  123.     if (cudaStatus != cudaSuccess)   
  124.     {  
  125.         fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);  
  126.         goto Error;  
  127.     }  
  128.     // Copy output vector from GPU buffer to host memory.  
  129.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  130.     if (cudaStatus != cudaSuccess)   
  131.     {  
  132.         fprintf(stderr, "cudaMemcpy failed!");  
  133.         goto Error;  
  134.     }  
  135. Error:  
  136.     cudaFree(dev_c);  
  137.     cudaFree(dev_a);  
  138.     cudaFree(dev_b);      
  139.     return cudaStatus;  
  140. }  


addKernel_blk是采用块并行实现的向量相加操作,而addKernel_thd是采用线程并行实现的向量相加操作。分别运行,得到的结果如下图所示:

线程并行:

块并行:

可见性能竟然相差近16倍!因此选择并行处理方法时,如果问题规模不是很大,那么采用线程并行是比较合适的,而大问题分多个线程块处理时,每个块内线程数不要太少,像本文中的只有1个线程,这是对硬件资源的极大浪费。一个理想的方案是,分N个线程块,每个线程块包含512个线程,将问题分解处理,效率往往比单一的线程并行处理或单一块并行处理高很多。这也是CUDA编程的精髓。

上面这种分析程序性能的方式比较粗糙,只知道大概运行时间长度,对于设备程序各部分代码执行时间没有一个深入的认识,这样我们就有个问题,如果对代码进行优化,那么优化哪一部分呢?是将线程数调节呢,还是改用共享内存?这个问题最好的解决方案就是利用Visual Profiler。下面内容摘自《CUDA_Profiler_Users_Guide》

“Visual Profiler是一个图形化的剖析工具,可以显示你的应用程序中CPU和GPU的活动情况,利用分析引擎帮助你寻找优化的机会。”

其实除了可视化的界面,NVIDIA提供了命令行方式的剖析命令:nvprof。对于初学者,使用图形化的方式比较容易上手,所以本节使用Visual Profiler。

打开Visual Profiler,可以从CUDA Toolkit安装菜单处找到。主界面如下:

我们点击File->New Session,弹出新建会话对话框,如下图所示:

其中File一栏填入我们需要进行剖析的应用程序exe文件,后面可以都不填(如果需要命令行参数,可以在第三行填入),直接Next,见下图:

第一行为应用程序执行超时时间设定,可不填;后面三个单选框都勾上,这样我们分别使能了剖析,使能了并发核函数剖析,然后运行分析器。

点Finish,开始运行我们的应用程序并进行剖析、分析性能。

上图中,CPU和GPU部分显示了硬件和执行内容信息,点某一项则将时间条对应的部分高亮,便于观察,同时右边详细信息会显示运行时间信息。从时间条上看出,cudaMalloc占用了很大一部分时间。下面分析器给出了一些性能提升的关键点,包括:低计算利用率(计算时间只占总时间的1.8%,也难怪,加法计算复杂度本来就很低呀!);低内存拷贝/计算交叠率(一点都没有交叠,完全是拷贝——计算——拷贝);低存储拷贝尺寸(输入数据量太小了,相当于你淘宝买了个日记本,运费比实物价格还高!);低存储拷贝吞吐率(只有1.55GB/s)。这些对我们进一步优化程序是非常有帮助的。

我们点一下Details,就在Analysis窗口旁边。得到结果如下所示:

通过这个窗口可以看到每个核函数执行时间,以及线程格、线程块尺寸,占用寄存器个数,静态共享内存、动态共享内存大小等参数,以及内存拷贝函数的执行情况。这个提供了比前面cudaEvent函数测时间更精确的方式,直接看到每一步的执行时间,精确到ns。

在Details后面还有一个Console,点一下看看。

这个其实就是命令行窗口,显示运行输出。看到加入了Profiler信息后,总执行时间变长了(原来线程并行版本的程序运行时间只需4ms左右)。这也是“测不准定理”决定的,如果我们希望测量更细微的时间,那么总时间肯定是不准的;如果我们希望测量总时间,那么细微的时间就被忽略掉了。

后面Settings就是我们建立会话时的参数配置,不再详述。

通过本节,我们应该能对CUDA性能提升有了一些想法,好,下一节我们将讨论如何优化CUDA程序。

http://blog.csdn.net/kkk584520/article/details/9413973

http://blog.csdn.net/kkk584520/article/details/9414191

http://blog.csdn.net/kkk584520/article/details/9415199

http://blog.csdn.net/kkk584520/article/details/9417251

http://blog.csdn.net/kkk584520/article/details/9420793

http://blog.csdn.net/kkk584520/article/details/9428389

http://blog.csdn.net/kkk584520/article/details/9428859

http://blog.csdn.net/kkk584520/article/details/9449635

http://blog.csdn.net/kkk584520/article/details/9472695

http://blog.csdn.net/kkk584520/article/details/9473319

http://blog.csdn.net/kkk584520/article/details/9490233

阅读(9266) | 评论(0) | 转发(0) |
0

上一篇:PID理解

下一篇:SourceAFIS 的使用

给主人留下些什么吧!~~