这是sklearn的linear regression和前两天的statsmodel不一样,statsmodel如果用 statsmodels.api,不论是fit方法还是predict方法,
都需要用sm.add_constant方法增加一列const,
如果使用statsmodels.formula.api则不需要add_constant方法,
只需要传入R-style formula string就可以.
使用sklearn的LinearRegression则可以直接fit,predict. 只是要注意传入参数的shape.
-
# coding: utf-8
-
-
import numpy as np
-
import statsmodels.api as sm
-
import seaborn as sns
-
import matplotlib.pyplot as plt
-
import pandas as pd
-
from sklearn.linear_model import LinearRegression
-
sns.set()
-
-
data=pd.read_csv('data-analysis/python-jupyter/1.01. Simple linear regression.csv')
-
-
y=data['GPA']
-
X=data['SAT']
-
print(X.shape)
-
print(y.shape)
-
-
reg=LinearRegression()
-
'''
-
run reg.fit(X,y)
-
error message:
-
ValueError: Expected 2D array, got 1D array instead:
-
-
check X type
-
type(X) == Series,
-
-
'''
-
-
#reshape
-
X_matrix=X.values.reshape(-1,1)
-
print(X_matrix.shape)
-
-
reg.fit(X_matrix, y)
-
-
'''
-
reg.score: R-squared
-
reg.coef_: coefficient / slope
-
reg.intercept_: intercept
-
'''
-
print(reg.score(X_matrix, y))
-
print(reg.coef_)
-
print(reg.intercept_)
-
-
-
#make prediction
-
gen_data=np.linspace(1700,1800, num=10, dtype=int)
-
new_data=pd.DataFrame(data=gen_data, columns=['SAT'])
-
reg.predict(new_data)
-
new_data['Predicted_GPA']=reg.predict(new_data)
-
print(new_data)
下面是前两天的用statsmodel.api的predict部分
-
#predict
-
gen_data=np.linspace(1700,1800, num=10, dtype=int)
-
new_data=pd.DataFrame(data=gen_data, columns=['SAT'])
-
new_x=sm.add_constant(new_data)
-
-
predicted_y=results.predict(new_x)
-
-
new_x['Predicted_GPA']=predicted_y
-
#drop const-column
-
new_x=new_x.drop(['const'], axis=1)
-
print(new_x)
阅读(10953) | 评论(0) | 转发(0) |