在123页的pos-tagging with spaCy,我电脑上运行代码的结果和书上的不一致,原因未知。
1. 运行环境
-
root@kali:~# ipython3
Python 3.6.6 (default, Jun 27 2018, 14:44:17)
Type "copyright", "credits" or "license" for more information.
IPython 5.5.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
-
-
In [16]: spacy.__version__
-
Out[16]: '2.0.12'
2. 实际代码,只贴出不一致的两段代码
书中的例子,sent_2中的refuse 在书中是'noun', 而我的结果是refuse ADJ JJ,adjective形容词。
sent_3中,her 在书中是ADJ, 形容词, 而我的结果是her PRON PRP, pronoun代词.
第一个fish在书中是动词verb, 而我的结果是fish NOUN NN, noun 名词。
-
In [4]: import spacy
-
-
In [5]: nlp=spacy.load('en')
-
-
In [6]: sent_0 = nlp('Mathiew and I went to the park.')
-
-
In [7]: sent_1 = nlp('If Clement was asked to take out the garbage, he would ref
-
...: use.')
-
-
In [8]: sent_2 = nlp('Baptiste was in charge of the refuse treatment center.')
-
-
In [9]: sent_3 = nlp('Marie took out her rather suspicious and fishy cat to go f
-
...: ish for fish.')
-
-
-
In [12]: for token in sent_2:
-
...: print(token.text, token.pos_, token.tag_)
-
...:
-
...:
-
Baptiste PROPN NNP
-
was VERB VBD
-
in ADP IN
-
charge NOUN NN
-
of ADP IN
-
the DET DT
-
refuse ADJ JJ
-
treatment NOUN NN
-
center NOUN NN
-
. PUNCT .
-
-
-
In [15]: for token in sent_3:
-
...: print(token.text, token.pos_, token.tag_)
-
...:
-
Marie PROPN NNP
-
took VERB VBD
-
out PART RP
-
her PRON PRP
-
rather ADV RB
-
suspicious ADJ JJ
-
and CCONJ CC
-
fishy ADJ JJ
-
cat NOUN NN
-
to PART TO
-
go VERB VB
-
fish NOUN NN
-
for ADP IN
-
fish NOUN NN
-
. PUNCT .
阅读(1895) | 评论(0) | 转发(0) |