Data Science 打算写一系列的笔记,记录下平时看书,看视频学到的知识.
今天是第一课.
1. Mean, Mode, Median.
-
Mean AKA Averate: sum/ number of samples
-
Median: sort the values, and take the value at the midpoint, for even numbers
-
then take the average of the midpoint 2.
-
Mode: the most common value in a data set, which means this data occurs the most time.
下面使用Python 代码来实地求出这些值.
-
#import packages
-
import numpy as np
-
from scipy import stats
-
import matplotlib.pyplot as plt
-
-
#fabricate some data
-
#use np.random.normal Draw random samples from a normal (Gaussian) distribution
-
incomes = np.random.normal(27000,15000,10000)
-
'''
-
Parameters
-
----------
-
loc : float or array_like of floats
-
Mean ("centre") of the distribution.
-
scale : float or array_like of floats
-
Standard deviation (spread or "width") of the distribution.
-
size : int or tuple of ints, optional
-
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
-
``m * n * k`` samples are drawn. If size is ``None`` (default),
-
a single value is returned if ``loc`` and ``scale`` are both scalars.
-
Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.
-
'''
-
np.mean(incomes) #average ,close to 27000
-
plt.hist(incomes, 50)
-
plt.show()
-
-
#compute median
-
np.median(incomes)
-
-
#add one outlier, then the mean will change a lot, but the median will not change too much.
-
incomes = np.append(incomes, [1000000000])
-
In [26]: np.mean(incomes)
-
Out[26]: 126837.27483313478
-
In [27]: np.median(incomes)
-
Out[27]: 26584.942499458524
-
-
#If there is more than one such value, only the smallest is returned.
-
lst=[1,1,2,2,3,3,4,4]
-
In [20]: stats.mode(lst)
-
Out[20]: ModeResult(mode=array([1]), count=array([2]))
-
In [15]: lst=[1,2,3,2,2,2]
-
In [16]: stats.mode(lst)
-
Out[16]: ModeResult(mode=array([2]), count=array([4]))
-
ages = np.random.randint(18,high=90, size=500)
-
stats.mode(ages)
2. standard deviation and variance:
variance: is simply the average of the squared differences from the mean.
Standard deviation is the squared root of the variance.
Example:
what is the variance of (1,4,5,4,8)
get mean: (4.4)
differences from the mean: (-3.4, -0.4, 0.6, -0.4, 3.6)
Squared differences: (11.56, 0.16, 0.36, 0.16, 12.96)
average of the squared differences: 5.04
Standard deviation : 2.24
下面是代码:
-
#use numpy to calculate variance and standard deviation.
-
In [30]: lst=[1,4,5,4,8]
-
#standard deviation
-
In [31]: np.std(lst)
-
Out[31]: 2.2449944320643649
-
#variance
-
In [32]: np.var(lst)
-
Out[32]: 5.04
阅读(1042) | 评论(0) | 转发(0) |