1..
is this Binary Tree a Binary Search Tree.
对于Binary Search Tree,如果使用inorder traversal, 则可以得到一个ordered list.
所以这种方法最简单:
-
#BST Node class
-
class Tree_Node:
-
__slots__='value','left','right'
-
-
def __init__(self, value, left=None, right=None):
-
self.value = value
-
self.left = left
-
self.right = right
-
-
#binary search Tree: inorder traversal will get a sorted list
-
def is_bst2(tree):
-
tree_values = []
-
-
def inorder(tree):
-
if tree != None:
-
inorder(tree.left)
-
tree_values.append(tree.value)
-
inorder(tree.right)
-
-
inorder(tree)
-
#print(tree_values)
-
return sorted(tree_values) == tree_values
另外一个思路则是使用递归,多使用两个变量,记录当前的key上限和下限,然后比较所有Node是否小于上限并且大于下限。然后左右Node递归。
-
#use recursion
-
def is_bst(node, lower_lim=None, upper_lim=None):
-
if lower_lim is not None and node.value < lower_lim:
-
return False
-
if upper_lim is not None and upper_lim < node.value:
-
return False
-
-
is_left_bst = True
-
is_right_bst = True
-
-
if node.left is not None:
-
is_left_bst = is_bst(node.left, lower_lim, node.value)
-
if node.right is not None:
-
is_right_bst = is_bst(node.right, node.value, upper_lim)
-
-
return is_left_bst and is_right_bst
-
-
def test_is_bst():
-
root=Tree_Node(10)
-
root.left = Tree_Node(5)
-
root.right = Tree_Node(15)
-
root.right.left = Tree_Node(12)
-
root.right.right = Tree_Node(20)
-
-
#root.left.right =Tree_Node(1)
-
-
print(is_bst2(root))
-
print(is_bst(root))
-
-
test_is_bst()
2..
print tree level
''' eg: tree below
1
/ \
2 3
/ \
4 5
will be printed as
"1
2 3
4 5"
'''
-
import collections
-
def levelOrderPrint(tree):
-
-
if tree == None:
-
return
-
nodes = collections.deque([tree])
-
-
currentCount =1
-
nextCount = 0
-
-
while len(nodes) != 0:
-
currentNode = nodes.popleft()
-
currentCount -= 1
-
-
print(currentNode.value,end=' ')
-
-
if currentNode.left:
-
nodes.append(currentNode.left)
-
nextCount += 1
-
-
if currentNode.right:
-
nodes.append(currentNode.right)
-
nextCount += 1
-
-
if currentCount == 0:
-
print()
-
currentCount, nextCount = nextCount, currentCount
-
-
-
def test_levelOrderPrint():
-
root=Tree_Node(1)
-
root.left=Tree_Node(2)
-
root.right=Tree_Node(3)
-
root.left.left=Tree_Node(4)
-
root.right.right=Tree_Node(5)
-
-
levelOrderPrint(root)
-
-
-
test_levelOrderPrint()
3.
lowest common ancestors , assume no duplicates in the binary tree
找到两个Node 最近的共同祖先。
这个方法是从head 到两个Node的Path返回一个list,
然后从list里面开始pop,开始比较,直到发现不同的Node, break,返回最后一个相同的Node .
-
#lower common ancestors , no duplicates in the binary tree
-
def lca(root, value1, value2):
-
path_to_value1 = path_to_x(root, value1)
-
path_to_value2 = path_to_x(root, value2)
-
[ print (i.value) for i in path_to_value1]
-
[ print (i.value) for i in path_to_value2]
-
-
if path_to_value1 is None or path_to_value2 is None:
-
return None
-
-
lca_to_return = None
-
-
-
while len(path_to_value1) !=0 and len(path_to_value2)!=0:
-
value1_pop = path_to_value1.pop()
-
value2_pop = path_to_value2.pop()
-
if value1_pop == value2_pop:
-
lca_to_return = value1_pop
-
else:
-
break
-
-
return lca_to_return
-
-
-
#return a list from node to x
-
def path_to_x(root, x):
-
-
if root is None:
-
return None
-
-
if root.value == x:
-
return [root]
-
-
left_path = path_to_x(root.left, x)
-
if left_path is not None:
-
left_path.append(root)
-
return left_path
-
-
right_path = path_to_x(root.right, x)
-
if right_path is not None:
-
right_path.append(root)
-
return right_path
-
-
return None
-
-
-
def test_lca():
-
''' Tree like this
-
5(head)
-
/ \
-
1 4
-
/ \ / \
-
3 8 9 2
-
/ \
-
6 7
-
lca(head, 8, 7) -> return 1
-
'''
-
-
head = Tree_Node(5)
-
head.left = Tree_Node(1)
-
head.left.left= Tree_Node(3)
-
head.left.right = Tree_Node(8)
-
head.left.left.left = Tree_Node(6)
-
head.left.left.right =Tree_Node(7)
-
head.right= Tree_Node(4)
-
head.right.left = Tree_Node(9)
-
head.right.right = Tree_Node(2)
-
-
ret = lca(head, 8, 7)
-
if ret:
-
print(ret.value)
-
-
test_lca()
4..
修剪一个BST, 提供一个最小值和一个最大值,返回值在其中的Node,并且仍然保留BST的特性。
-
'''
-
Given the root of a binary search Tree and 2
-
numbers min and max, trim the tree such that all the numbers in the new tree
-
are between min and max (inclusive),The resulting tree should still be a valid
-
binary search Tree.
-
eg:
-
8
-
/ \
-
3 10
-
/ \ \
-
1 6 14
-
/ \ /
-
4 7 13
-
-
min=5, max=13
-
-
will get resulting BST:
-
-
8
-
/ \
-
6 10
-
\ \
-
7 13
-
'''
-
-
-
def trim_bst(tree,min_value, max_value):
-
#use postorder traversal
-
-
if tree == None:
-
return None
-
-
tree.left = trim_bst(tree.left, min_value, max_value)
-
tree.right = trim_bst(tree.right, min_value, max_value)
-
-
if min_value <= tree.value <= max_value:
-
return tree
-
-
if tree.value < min_value:
-
return tree.right
-
-
if tree.value > max_value:
-
return tree.left
-
-
def inorder_traversal(root):
-
-
if root is None:
-
return
-
else:
-
inorder_traversal(root.left)
-
print(root.value)
-
inorder_traversal(root.right)
-
-
-
-
def test_trim_bst():
-
root=Tree_Node(8)
-
root.left= Tree_Node(3)
-
root.left.left = Tree_Node(1)
-
root.left.right=Tree_Node(6)
-
root.left.right.left = Tree_Node(4)
-
root.left.right.right = Tree_Node(7)
-
-
root.right=Tree_Node(10)
-
root.right.right= Tree_Node(14)
-
root.right.right.left = Tree_Node(13)
-
-
-
trim_bst(root, 5, 13)
-
-
#inorder traversal will get sorted output
-
#inorder_traversal(root)
-
-
-
levelOrderPrint(root)
-
-
-
#test_trim_bst()
阅读(838) | 评论(0) | 转发(0) |