最近在看一个Sequence Learning 的视频,然后研究了别人的代码,因为我的"typo" 导致代码有点”歪“,但是揭露了一个有趣的现象.
1. 这个代码是一个category_predictor, 需要用到下面的这个库. -> sklearn
在kali linux上安装则需要执行这个命令:
2. 代码如下:
-
#!/usr/bin/env python3
-
# -*- coding: utf-8 -*-
-
# Author: hezhb
-
# Created Time: Mon 26 Feb 2018 04:27:53 PM CST
-
-
from sklearn.datasets import fetch_20newsgroups
-
from sklearn.naive_bayes import MultinomialNB
-
from sklearn.feature_extraction.text import TfidfTransformer
-
from sklearn.feature_extraction.text import CountVectorizer
-
-
#Define the category map
-
category_map = {
-
"talk.politics.misc" : "Politics",
-
"rec.autos" : "Autos",
-
"rec.sport.hockey": "Hockey",
-
"sci.electronics": "Electronics",
-
"sci.med" : "Medicine" }
-
-
#get the training dataset
-
training_data = fetch_20newsgroups(subset="train",
-
categories=category_map.keys(), shuffle=True, random_state=5 )
-
-
-
#Build a count vectorizer and extract term counts
-
count_vectorizer = CountVectorizer()
-
train_tc = count_vectorizer.fit_transform(training_data.data)
-
print("\nDimensions of training data:", train_tc.shape)
-
-
#create the tf-idf transformer
-
tfidf= TfidfTransformer()
-
train_tfidf=tfidf.fit_transform(train_tc)
-
-
#Define test data
-
input_data=[
-
"You need to be careful with cars when you are driving on slippery roads",
-
"A lot of devices can be operated wirelessly",
-
"Players need to be careful when they are close to goal posts",
-
"Political debates help us understand the perspectives of both sides",
-
"Political debates help us understand the perspectives of both slides",
-
"Political debates help us understand the perspective of both sides",
-
]
-
-
#Train a Multinomial Naive Bayes classifier
-
classifier = MultinomialNB().fit(train_tfidf, training_data.target)
-
-
#Transform input data using count vectorizer
-
input_tc = count_vectorizer.transform(input_data)
-
-
#Transform vectorized data using tfidf transformer
-
input_tfidf = tfidf.transform(input_tc)
-
-
#predict the output categories
-
predictions=classifier.predict(input_tfidf)
-
-
#print the outputs
-
for sent, category in zip(input_data, predictions):
-
print("\nInput:", sent , "\nPredicted category:", \
-
category_map[training_data.target_names[category]])
执行结果很有意思:
-
In [15]: %cd /usr/local/src/py/py_nlp/usr/local/src/py/py_nlp
-
-
In [16]: %run -i /usr/local/src/py/py_nlp/category_predictor.py
-
-
Dimensions of training data: (2844, 40321)
-
-
Input: You need to be careful with cars when you are driving on slippery roads
-
Predicted category: Autos
-
-
Input: A lot of devices can be operated wirelessly
-
Predicted category: Electronics
-
-
Input: Players need to be careful when they are close to goal posts
-
Predicted category: Hockey
-
-
Input: Political debates help us understand the perspectives of both sides
-
Predicted category: Politics
-
-
Input: Political debates help us understand the perspectives of both slides
-
Predicted category: Medicine
-
-
Input: Political debates help us understand the perspective of both sides
-
Predicted category: Medicine
后面三句完全是一个letter的差距,category就会变.
sides:方面,
slides: 这个词有滑落的意思,为什么变成slides就会被predict成 Medicine category.
最后一句:
perspectives:复数变单数,也会影响这个句子的归类。Category 类别为Medicine.
3. 结果:
这是个有趣的现象,但是我现在不知道导致这个现象的原因是什么。
阅读(95761) | 评论(0) | 转发(0) |