最小生成树是对于有权连通图求权重合最小的联通子图问题的算法,注意连通图是不能带环的。像这类问题在算法题中很常见,像求几个城市间网路搭建成本消耗问题就可以运用prim最小生成树来解决。
最小生成树和Dijkstra算法的思想比较类似, 只是Dijkstra主要关注每个节点的优先级, 而prim关注于相连的边的优先级。详细的还是从代码中看:
伪代码:
priority_queue que;
que.push(startE); //将源点的边长加入队列
while que is not empty
V a = que.top();
vector T.pushback(a); //每次取出的边都记录下来,最后这个vector就是最小生成树里所有的边
que.pop();
for all V connect with a:
if d(v) > d(a) + length_a_to_v;
d(v) = d(a) + length_a_to_v;
que.push(length_a_to_v);
直接上代码:
-
#include <functional>
-
#include <queue>
-
#include <vector>
-
using namespace std;
-
#define MAXV 4
-
#define INF 100000
-
int d[4] = { 0 };
-
int edge[4][4] = { 0 };
-
void init()
-
{
-
for (int i = 0; i < MAXV; i++)
-
for (int j = 0; j < MAXV; j++)
-
edge[i][j] = INF;
-
edge[0][0] = 0;
-
edge[0][1] = 6;
-
edge[1][0] = 6;
-
edge[0][2] = 1;
-
edge[2][0] = 1;
-
edge[1][3] = 2;
-
edge[3][1] = 2;
-
edge[2][3] = 8;
-
edge[3][2] = 8;
-
edge[3][0] = 9;
-
edge[0][3] = 9;
-
}
-
-
typedef pair<int, int> p;
-
vector<p> mst_vec;
-
void MST(p s)
-
{
-
priority_queue<p, vector<p>, greater<p>> que;
-
que.push(s);
-
while (!que.empty())
-
{
-
p tmp = que.top();
-
que.pop();
-
if (mst_vec.size() != MAXV)
-
mst_vec.push_back(tmp);
-
else
-
break;
-
for (int i = 0; i < MAXV; i++)
-
{
-
if (tmp.second != i)
-
{
-
if (edge[tmp.second][i] != INF && d[i] > d[tmp.second] + edge[tmp.second][i])
-
{
-
d[i] = d[tmp.second] + edge[tmp.second][i];
-
p newP;
-
newP.first = edge[tmp.second][i];
-
newP.second = i;
-
que.push(newP);
-
}
-
}
-
}
-
-
}
-
for (int i = 0; i < MAXV; i++)
-
{
-
printf("%d", mst_vec[i].first);
-
}
-
-
}
-
-
int _tmain(int argc, _TCHAR* argv[])
-
{
-
fill(d, d + 4, INF);
-
-
init();
-
d[0] = 0;
-
p s;
-
s.first = 0;
-
s.second = d[0];
-
MST(s);
-
-
return 0;
-
}
阅读(1775) | 评论(0) | 转发(0) |