Dijkstra算法是求单源最短路径好方法,但是只能处理没有负边的图的问题,有一条边为负的就会导致最终的结果不正确
时间复杂度可以达到O(|E|log|v|), 所以一般求单源最短路径问题都可以用这个算法
伪代码:
priority_queue que;
que.push(startV);
while que is not empty
V a = que.top();
que.pop();
for all V connect with a:
if d(v) > d(a) + length_a_to_v;
d(v) = d(a) + length_a_to_v;
que.push(v);
直接上代码:
-
#include <functional>
-
#include <queue>
-
using namespace std;
-
#define MAXV 4
-
#define INF 100000
-
int d[4] = { 0 };
-
int edge[4][4] = { 0 };
-
void init()
-
{
-
for (int i = 0; i < MAXV; i++)
-
for (int j = 0; j < MAXV; j++)
-
edge[i][j] = INF;
-
edge[0][0] = 0;
-
edge[0][1] = 6;
-
edge[0][2] = 1;
-
edge[1][3] = 2;
-
edge[2][3] = 8;
-
edge[3][0] = 3;
-
}
-
-
typedef pair<int, int> p;
-
-
-
-
void dijsktra(p s)
-
{
-
priority_queue<p, vector<p>, greater<p>> que;
-
que.push(s);
-
while (!que.empty())
-
{
-
p tmp = que.top();
-
que.pop();
-
for (int i = 0; i < MAXV; i++)
-
{
-
if (tmp.first != i)
-
{
-
if (edge[tmp.first][i] != INF && (d[i] > d[tmp.first] + edge[tmp.first][i]))
-
{
-
d[i] = d[tmp.first] + edge[tmp.first][i];
-
p newP;
-
newP.first = i;
-
newP.second = d[i];
-
que.push(newP);
-
}
-
}
-
}
-
-
}
-
for (int i = 0; i < MAXV; i++)
-
{
-
printf("%d",d[i]);
-
}
-
-
}
-
-
int _tmain(int argc, _TCHAR* argv[])
-
{
-
fill(d, d + 4, INF);
-
-
init();
-
d[0] = 0;
-
p s;
-
s.first = 0;
-
s.second = d[0];
-
dijsktra(s);
-
-
return 0;
-
}
阅读(1731) | 评论(0) | 转发(1) |