Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1584554
  • 博文数量: 399
  • 博客积分: 8508
  • 博客等级: 中将
  • 技术积分: 5302
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-14 09:28
个人简介

能力强的人善于解决问题,有智慧的人善于绕过问题。 区别很微妙,小心谨慎做后者。

文章分类

全部博文(399)

文章存档

2018年(3)

2017年(1)

2016年(1)

2015年(69)

2013年(14)

2012年(17)

2011年(12)

2010年(189)

2009年(93)

分类: LINUX

2010-07-21 00:56:24

下面是某同仁在baidu和google的笔试中遇到的两道“百度、google海量数据搜索算法题解” 

Google和baidu,人家的数据量在那里摆着,他们的命题思路很明确,不要求具体语言,只要求程序的效率和可行性,题目大多数是关于海量数据搜索的算法问题。 

百度、google的海量数据搜索算法题 

  1、有1亿个浮点数,请找出其中对大的10000个。提示:假设每个浮点数占4个字节,1亿个浮点数就要站到相当大的空间,因此不能一次将全部读入内存进行排序。 

  2、有一篇英文文章(也就是说每个单词之间由空格分隔),请找出“csdn”着个单词出现的次数,要求效率最高,并写出算法的时间级。 


Peak Wong的海量数据搜索算法题解 

  1、有1亿个浮点数,请找出其中对大的10000个。提示:假设每个浮点数占4个字节,1亿个浮点数就要站到相当大的空间,因此不能一次将全部读入内存进行排序。 

  ~~~~~~~~~~~~~ 

  其实占用内存不算大, 可以接受. 呵呵. 

  既然不可以一次读入内存, 那可以这么试试: 

  方法1: 读出100w个数据, 找出最大的1w个, 如果这100w数据选择够理想, 那么最小的这1w个数据里面最小的为基准, 可以过滤掉1亿数据里面99%的数据, 最后就再一次在剩下的100w(1%)里面找出最大的1w个咯~~ 

  方法2: 分块, 比如100w一个块, 找出最大1w个, 一次下来就剩下100w数据需要找出1w个了. 

  对于上面提到的找出100w个数据里面最大的1w个, 说起来比较罗嗦, 还是说说找到第1w个大的数字的方法: 

  用快速排序的方法, 分2堆, 如果大的那堆个数N大于1w个, 继续对大堆快速排序一次分成2堆, 如果大堆个数N小于1w, 就在小的那堆里面快速排序一次, 找第10000-N大的数字; 递归以上过程, 就可以找到第1w大的数. 据说也是STL的search_n()的方法; 

  参考上面的找出第1w大数字, 相信楼主就可以类似的方法找出前1w大数字了. 


  第二个问题,其实很简单。 

  假设不区分大小写,由于英文字母有26个,因此,可以将单词映射为数字。csdn被映射成: 

  ( 'c '- 'a ')*32*32*32+( 's '- 'a ')*32*32+( 'd '- 'a ')*32+( 'n '- 'a ') 

  即:( 'c '- 'a ')*(1 < <15)+( 's '- 'a ')*(1 < <10)+( 'd '- 'a ')*(1 < <5)+( 'n '- 'a ') 



大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。 

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 

1.Bloom filter 

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 

基本原理及要点: 
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存 在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简 单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误 率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 

扩展: 
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿 个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。 

2.Hashing 

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存 

基本原理及要点: 
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。 
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。 

扩展: 
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同 时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个 位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。 

问题实例: 
1).海量日志数据,提取出某日访问百度次数最多的那个IP。 

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。 

3.bit-map 

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下 

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码 

扩展:bloom filter可以看做是对bit-map的扩展 

问题实例: 

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。 

4.堆 

适用范围:海量数据前n大,并且n比较小,堆可以放入内存 

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换 那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很 高。 

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。 

问题实例: 
1)100w个数中找最大的前100个数。 

用一个100个元素大小的最小堆即可。 

5.双层桶划分 

适用范围:第k大,中位数,不重复或重复的数字 

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。 

扩展: 

问题实例: 
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。 

2).5亿个int找它们的中位数。 

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。 

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定 区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。 

6.数据库索引 

适用范围:大数据量的增删改查 

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。 
扩展: 
问题实例: 


7.倒排索引(Inverted index) 

适用范围:搜索引擎,关键字查询 

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。 

以英文为例,下面是要被索引的文本: 
T0 = "it is what it is" 
T1 = "what is it" 
T2 = "it is a banana" 
我们就能得到下面的反向文件索引: 
 "a":      {2} 
 "banana": {2} 
 "is":     {0, 1, 2} 
 "it":     {0, 1, 2} 
 "what":   {0, 1} 
检索的条件"what", "is" 和 "it" 将对应集合的交集。 

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在 正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的 文档,很容易看到这个反向的关系。 

扩展: 

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。 

8.外排序 

适用范围:大数据的排序,去重 

基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树 

扩展: 

问题实例: 
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。 

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。 

9.trie树 

适用范围:数据量大,重复多,但是数据种类小可以放入内存 

基本原理及要点:实现方式,节点孩子的表示方式 

扩展:压缩实现。 

问题实例: 
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。 

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现? 

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。 

10.分布式处理 mapreduce 

适用范围:数据量大,但是数据种类小可以放入内存 

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。 

扩展: 

问题实例: 

1).The canonical example application of MapReduce is a process to count the appearances of 

each different word in a set of documents: 
 void map(String name, String document): 
  // name: document name 
  // document: document contents 
  for each word w in document: 
    EmitIntermediate(w, 1); 
  
 void reduce(String word, Iterator partialCounts): 
  // key: a word 
  // values: a list of aggregated partial counts 
  int result = 0; 
  for each v in partialCounts: 
    result += ParseInt(v); 
  Emit(result); 
Here, each document is split in words, and each word is counted initially with a "1" value by 

the Map function, using the word as the result key. The framework puts together all the pairs 

with the same key and feeds them to the same call to Reduce, thus this function just needs to 

sum all of its input values to find the total appearances of that word. 

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)? 


经典问题分析 

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。 

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序 

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当 然这样导致维护次数增加,不如完全统计后在求前N大效率高。 

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。 

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将 数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子 只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。 

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集 到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数 最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千 个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选 出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。 

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。 

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。 

转载请注明出处: 
作者phylips@bmy 

参考文献: 
http://blog.csdn.net/jiaomeng/archive/2007/03/08/1523940.aspx       d-Left Hashing 
http://blog.csdn.net/jiaomeng/archive/2007/01/27/1495500.aspx 
 
http://hi.baidu.com/xdzhang_china/blog/item/2847777e83fb020229388a15.html 应用Bloom Filter的几个小技巧 
 

发信人: cshyh (Zakklars), 信区: Algorithm 
标  题: Re: 大数据量,海量数据 处理方法总结 
发信站: 兵马俑BBS (Thu Nov 26 20:02:27 2009), 本站(bbs.xjtu.edu.cn) 

嗯 比较不错啊 想了下比较常见的里面没写赫赫有名的二叉排序树 

发信人: phylips (星星||一年磨十剑), 信区: Algorithm 
标  题: Re: 大数据量,海量数据 处理方法总结 
发信站: 兵马俑BBS (Thu Nov 26 22:36:34 2009), 本站(bbs.xjtu.edu.cn) 

恩 可以加下 
另外i/o 优化方面并没有太多涉及,如果对于这方面谁比较有心得可以补充一下 

发信人: appsony (懒羊羊), 信区: Algorithm 
标  题: Re: 大数据量,海量数据 处理方法总结 
发信站: 兵马俑BBS (Thu Nov 26 22:38:05 2009), 本站(bbs.xjtu.edu.cn) 

很不错啊 比较全面。bloom filter确实不错,刚看managing gigabytes这本书,里面讲索引的一种建法也是这种思想。

发信人: appsony (懒羊羊), 信区: Algorithm 
标  题: Re: 大数据量,海量数据 处理方法总结 
发信站: 兵马俑BBS (Thu Nov 26 22:41:11 2009), 本站(bbs.xjtu.edu.cn) 

话说应对这类面试题,把编程珠玑研究透彻就差不多了。平常用的话,Managing gigabytes这本书值得推荐一下。 



发信人: phylips (星星||一年磨十剑), 信区: Algorithm 
标  题: 面试题目-大数据量专题 
发信站: 兵马俑BBS (Thu Nov 26 16:30:44 2009), 本站(bbs.xjtu.edu.cn) 

1. 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。 

2. 有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 
  
3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词 

4.海量日志数据,提取出某日访问百度次数最多的那个IP。 

5.2.5亿个整数中找出不重复的整数,内存空间不足以容纳这2.5亿个整数。 

6.海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 

7.怎么在海量数据中找出重复次数最多的一个 

8.上千万or亿数据(有重复),统计其中出现次数最多的前N个数据。 

统计可以用hash,二叉数,trie树。对统计结果用堆求出现的前n大数据。增加点限制可以提高效率,比如 出现次数>数据总数/N的一定是在前N个之内 

9.1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现? 

10.一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前十个词。请给出思想,给时间复杂度分析。 

11.一个文本文件,也是找出前十个最经常出现的词,但这次文件比较长,说是上亿行或者十亿行,总之无法一次读入内存,问最优解。 

12.有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复要按照query的频度排序 

13.100w个数中找最大的前100个数 

14.寻找热门查询: 
搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录, 
这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多, 
也就是越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 
(1)请描述你解决这个问题的思路; 
(2)请给出主要的处理流程,算法,以及算法的复杂度。 

15.一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。 
如何找到N^2个数的中数(median)? 

本文由phylips@bmy收集整理,转载请注明出处 
谢谢合作。 


有一个1G的数组a,元素是0到2^30-1的自然数. 
我想把他打乱成随机的顺序,最简单的实现(代码最简)和时间最优的实现分别是什么? 


求算法:从一千万个数字里找出100个最大的数的最快算法。 

    
seabao 于 Wed Oct 21 18:58:06 2009 提到: 

堆排序 这种解决方案都是堆排序。 

都是面试惹得祸... 

还有其他点可以忽悠: 

1. 多线程去做会更快。 
2. 比较fashion的解决方案,MapReduce 我不知道怎么实现,但是大致意思还好。 

如果能把MapReduce的问题了解清楚,这样回答的话,估计大部分面试官都能被忽悠住。 


    duoduolo 于 Thu Oct 22 09:16:47 2009 提到: 

第k大元素那个算法么 


    
BlueBore 于 Fri Oct 23 09:18:58 2009 提到: 

这个数据量很小,用堆排或快排,平均复杂度都是O(n),快排常数因子更小些 

如果数据量大了选择并行算法,把问题拆开,分配到t个计算节点上,分别堆排,把本来n*lg100的问题转化为t个(n/t)lg100的问题,最后归并的代价是O(lgt),所以总的代价就是O(lgt+n/t),最后根据数据的规模选择t的大小。 


http://blog.csdn.net/lanphaday/archive/2008/12/18/3547899.aspx

http://space.cnblogs.com/question/4423/
阅读(674) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~