Chinaunix首页 | 论坛 | 博客
  • 博客访问: 7110700
  • 博文数量: 3857
  • 博客积分: 6409
  • 博客等级: 准将
  • 技术积分: 15948
  • 用 户 组: 普通用户
  • 注册时间: 2008-09-02 16:48
个人简介

迷彩 潜伏 隐蔽 伪装

文章分类

全部博文(3857)

文章存档

2017年(5)

2016年(63)

2015年(927)

2014年(677)

2013年(807)

2012年(1241)

2011年(67)

2010年(7)

2009年(36)

2008年(28)

分类: LINUX

2014-07-24 10:40:16

原文地址:Linux Namespaces机制 作者:lvyilong316

Linux Namespaces机制
——lvyilong316

Linux Namespaces机制提供一种资源隔离方案。PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace。每个Namespace里面的资源对其他Namespace都是透明的。要创建新的Namespace,只需要在调用clone时指定相应的flagLinux Namespaces机制为实现基于容器的虚拟化技术提供了很好的基础,LXCLinux containers)就是利用这一特性实现了资源的隔离。不同container内的进程属于不同的Namespace,彼此透明,互不干扰。下面我们就从clone系统调用的flag出发,来介绍各个Namespace

命名空间提供了虚拟化的一种轻量级形式,使得我们可以从不同的方面来查看运行系统的全局属性。该机制类似于Solaris中的zone FreeBSD中的jail。对该概念做一般概述之后,我将讨论命名空间框架所提供的基础设施。

1. 概念

传统上,在Linux以及其他衍生的UNIX变体中,许多资源是全局管理的。例如,系统中的所有进程按照惯例是通过PID标识的,这意味着内核必须管理一个全局的PID列表。而且,所有调用者通过uname系统调用返回的系统相关信息(包括系统名称和有关内核的一些信息)都是相同的。用户ID的管理方式类似,即各个用户是通过一个全局唯一的UID号标识。

全局ID使得内核可以有选择地允许或拒绝某些特权。虽然UID0root用户基本上允许做任何事,但其他用户ID则会受到限制。例如UIDn 的用户,不允许杀死属于用户m的进程(m n)。但这不能防止用户看到彼此,即用户n可以看到另一个用户m也在计算机上活动。只要用户只能操纵他们自己的进程,这就没什么问题,因为没有理由不允许用户看到其他用户的进程。

但有些情况下,这种效果可能是不想要的。如果提供Web主机的供应商打算向用户提供Linux计算机的全部访问权限,包括root权限在内。传统上,这需要为每个用户准备一台计算机,代价太高。使用KVMVMWare提供的虚拟化环境是一种解决问题的方法,但资源分配做得不是非常好。计算机的各个用户都需要一个独立的内核,以及一份完全安装好的配套的用户层应用。

命名空间提供了一种不同的解决方案,所需资源较少。在虚拟化的系统中,一台物理计算机可以运行多个内核,可能是并行的多个不同的操作系统。而命名空间则只使用一个内核在一台物理计算机上运作,前述的所有全局资源都通过命名空间抽象起来。这使得可以将一组进程放置到容器中,各个容器彼此隔离。隔离可以使容器的成员与其他容器毫无关系。但也可以通过允许容器进行一定的共享,来降低容器之间的分隔。例如,容器可以设置为使用自身的PID集合,但仍然与其他容器共享部分文件系统。

本质上,命名空间建立了系统的不同视图。此前的每一项全局资源都必须包装到容器数据结构中,只有资源和包含资源的命名空间构成的二元组仍然是全局唯一的。虽然在给定容器内部资源是自足的,但无法提供在容器外部具有唯一性的ID。图1给出了此情况的一个概述。

1.命名空间可以按层次关联起来。 每个命名空间都发
源于一个父命名空间,一个父命名空间可以有多个子命名空间

考虑系统上有3个不同命名空间的情况。命名空间可以组织为层次,我会在这里讨论这种情况。一个命名空间是父命名空间,衍生了两个子命名空间。假定容器用于虚拟主机配置中,其中的每个容器必须看起来像是单独的一台Linux计算机。因此其中每一个都有自身的init进程,PID0,其他进程的PID 以递增次序分配。两个子命名空间都有PID0init进程,以及PID分别为23的两个进程。由于相同的PID在系统中出现多次,PID号不是全局唯一的。

虽然子容器不了解系统中的其他容器,但父容器知道子命名空间的存在,也可以看到其中执行的所有进程。图中子容器的进程映射到父容器中,PID4 9。尽管系统上有9个进程,但却需要15PID来表示,因为一个进程可以关联到多个PID。至于哪个PID"正确"的,则依赖于具体的上下文。

如果命名空间包含的是比较简单的量,也可以是非层次的,例如下文讨论的UTS命名空间。在这种情况下,父子命名空间之间没有联系。

请注意,Linux系统对简单形式的命名空间的支持已经有很长一段时间了,主要是chroot系统调用。该方法可以将进程限制到文件系统的某一部分,因而是一种简单的命名空间机制。但真正的命名空间能够控制的功能远远超过文件系统视图。

新的命名空间可以用下面两种方法创建。

(1) 在用forkclone系统调用创建新进程时,有特定的选项可以控制是与父进程共享命名空间,还是建立新的命名空间。

(2) unshare系统调用将进程的某些部分从父进程分离,其中也包括命名空间。更多信息请参见手册页unshare(2)

在进程已经使用上述的两种机制之一从父进程命名空间分离后,从该进程的角度来看,改变全局属性不会传播到父进程命名空间,而父进程的修改也不会传播到子进程,至少对于简单的量是这样。而对于文件系统来说,情况就比较复杂,其中的共享机制非常强大,带来了大量的可能性。在标准内核中命名空间当前仍然标记为试验性的,为使内核的所有部分都能够感知到命名空间,相关开发仍然在进行中。但就内核版本2.6.24而言,基本的框架已经建立就绪。 当前的实现仍然存在一些问题,相关的信息可以参见Documentation/namespaces/compatibility-list.txt文件。

2. 实现

命名空间的实现需要两个部分:每个子系统的命名空间结构,将此前所有的全局组件包装到命名空间中;将给定进程关联到所属各个命名空间的机制。图 2说明了具体情形。


2 进程和命名空间之间的联系

2.3.2 命名空间(2

子系统此前的全局属性现在封装到命名空间中,每个进程关联到一个选定的命名空间。每个可以感知命名空间的内核子系统都必须提供一个数据结构,将所有通过命名空间形式提供的对象集中起来。struct nsproxy用于汇集指向特定于子系统的命名空间包装器的指针

struct nsproxy { 

        atomic_t count; 

        struct uts_namespace *uts_ns; 

        struct ipc_namespace *ipc_ns; 

        struct mnt_namespace *mnt_ns; 

        struct pid_namespace *pid_ns; 

        struct user_namespace *user_ns; 

        struct net *net_ns; 

};

当前内核的以下范围可以感知到命名空间:

(1)     UTS命名空间包含了运行内核的名称、版本、底层体系结构类型等信息。UTSUNIX Timesharing System的简称。

(2)     保存在struct ipc_namespace中的所有与进程间通信(IPC)有关的信息。

(3)     已经装载的文件系统的视图,在struct mnt_namespace中给出。

(4)     有关进程ID的信息,由struct pid_namespace提供。

(5)     struct user_namespace保存的用于限制每个用户资源使用的信息。

(6)     struct net_ns包含所有网络相关的命名空间参数。

PID Namespace

当调用clone时,设定了CLONE_NEWPID,就会创建一个新的PID Namespaceclone出来的新进程将成为Namespace里的第一个进程。一个PID Namespace为进程提供了一个独立的PID环境,PID Namespace内的PID将从1开始,在Namespace内调用forkvforkclone都将产生一个在该Namespace内独立的PID新创建的Namespace里的第一个进程在该Namespace内的PID将为1,就像一个独立的系统里的init进程一样。该Namespace内的孤儿进程都将以该进程为父进程,当该进程被结束时,该Namespace内所有的进程都会被结束。PID Namespace是层次性,新创建的Namespace将会是创建该Namespace的进程属于的Namespace的子NamespaceNamespace中的进程对于父Namespace是可见的,一个进程将拥有不止一个PID,而是在所在的Namespace以及所有直系祖先Namespace中都将有一个PID系统启动时,内核将创建一个默认的PID Namespace,该Namespace是所有以后创建的Namespace的祖先,因此系统所有的进程在该Namespace都是可见的。

IPC Namespace

当调用clone时,设定了CLONE_NEWIPC,就会创建一个新的IPC Namespaceclone出来的进程将成为Namespace里的第一个进程。一个IPC Namespace有一组System V IPC objects 标识符构成,这标识符有IPC相关的系统调用创建。在一个IPC Namespace里面创建的IPC object对该Namespace内的所有进程可见,但是对其他Namespace不可见,这样就使得不同Namespace之间的进程不能直接通信,就像是在不同的系统里一样。当一个IPC Namespace被销毁,该Namespace内的所有IPC object会被内核自动销毁。

PID NamespaceIPC Namespace可以组合起来一起使用,只需在调用clone时,同时指定CLONE_NEWPIDCLONE_NEWIPC,这样新创建的Namespace既是一个独立的PID空间又是一个独立的IPC空间。不同Namespace的进程彼此不可见,也不能互相通信,这样就实现了进程间的隔离。

mount Namespace

当调用clone时,设定了CLONE_NEWNS,就会创建一个新的mount Namespace。每个进程都存在于一个mount Namespace里面,mount Namespace为进程提供了一个文件层次视图。如果不设定这个flag,子进程和父进程将共享一个mount Namespace,其后子进程调用mountumount将会影响到所有该Namespace内的进程。如果子进程在一个独立的mount Namespace里面,就可以调用mountumount建立一份新的文件层次视图。该flag配合pivot_root系统调用,可以为进程创建一个独立的目录空间。

Network Namespace

当调用clone时,设定了CLONE_NEWNET,就会创建一个新的Network Namespace一个Network Namespace为进程提供了一个完全独立的网络协议栈的视图。包括网络设备接口,IPv4IPv6协议栈,IP路由表,防火墙规则,sockets等等。一个Network Namespace提供了一份独立的网络环境,就跟一个独立的系统一样。一个物理设备只能存在于一个Network Namespace中,可以从一个Namespace移动另一个Namespace中。虚拟网络设备(virtual network device)提供了一种类似管道的抽象,可以在不同的Namespace之间建立隧道。利用虚拟化网络设备,可以建立到其他Namespace中的物理设备的桥接。当一个Network Namespace被销毁时,物理设备会被自动移回init Network Namespace,即系统最开始的Namespace

UTS Namespace

当调用clone时,设定了CLONE_NEWUTS,就会创建一个新的UTS Namespace一个UTS Namespace就是一组被uname返回的标识符。新的UTS Namespace中的标识符通过复制调用进程所属的Namespace的标识符来初始化。Clone出来的进程可以通过相关系统调用改变这些标识符,比如调用sethostname来改变该Namespacehostname。这一改变对该Namespace内的所有进程可见。CLONE_NEWUTSCLONE_NEWNET一起使用,可以虚拟出一个有独立主机名和网络空间的环境,就跟网络上一台独立的主机一样。

以上所有clone flag都可以一起使用,为进程提供了一个独立的运行环境。LXC正是通过clone时设定这些flag,为进程创建一个有独立PIDIPCFSNetworkUTS空间的container。一个container就是一个虚拟的运行环境,对container里的进程是透明的,它会以为自己是直接在一个系统上运行的。一个container就像传统虚拟化技术里面的一台安装了OS的虚拟机,但是开销更小,部署更为便捷。

Linux Namespaces机制本身就是为了实现container based virtualizaiton开发的。它提供了一套轻量级、高效率的系统资源隔离方案,远比传统的虚拟化技术开销小,不过它也不是完美的,它为内核的开发带来了更多的复杂性,它在隔离性和容错性上跟传统的虚拟化技术比也还有差距。

阅读(550) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~