Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2484898
  • 博文数量: 357
  • 博客积分: 1241
  • 博客等级: 中尉
  • 技术积分: 4864
  • 用 户 组: 普通用户
  • 注册时间: 2011-01-27 06:48
个人简介

下死功夫,动活脑筋;读好书,交益友

文章分类

全部博文(357)

文章存档

2019年(12)

2018年(23)

2017年(67)

2016年(45)

2015年(51)

2014年(58)

2013年(53)

2012年(42)

2011年(6)

分类: 网络与安全

2014-05-16 14:41:43

For a n-bit RSA key, direct encryption (with PKCS#1 "old-style" padding) works for arbitrary binary messages up to floor(n/8)-11 bytes. In other words, for a 1024-bit RSA key (128 bytes), up to 117 bytes. With OAEP (the PKCS#1 "new-style" padding), this is a bit less: OAEP use a hash function with output length h bits; this implies a size limit of floor(n/8)-2*ceil(h/8)-2: still for a 1024-bit RSA key, with SHA-256 as hash function (h = 256), this means binary messages up to 60 bytes.

There is no problem in encrypting a RSA key with another RSA key (there is no problem in encryptingany sequence of bytes with RSA, whatever those bytes represent), but, of course, the "outer" RSA key will have to be bigger: with old-style padding, to encrypt a 256-byte message, you will need a RSA key with a modulus of at least 2136 bits.

Hybrid modes (you encrypt a random symmetric key with RSA, and then use that key for symmetric encryption) are nonetheless recommended as a general case, if only because they do not have any practical size limits, and also because they make it easier to replace the RSA part with another key exchange algorithm (e.g. Diffie-Hellman).

阅读(2816) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~
评论热议
请登录后评论。

登录 注册