全部博文(396)
分类: 嵌入式
2018-01-24 16:26:16
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
??通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
??此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
??初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”。然后,从U中找出路径最短的顶点,并将其加入 到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
以”邻接矩阵”为例对迪杰斯特拉算法进行说明,对于”邻接表”实现的图在后面会给出相应的源码。
// 邻接矩阵 typedef struct _graph
{ char vexs[MAX]; // 顶点集合 int vexnum; // 顶点数 int edgnum; // 边数 int matrix[MAX][MAX]; // 邻接矩阵 }Graph, *PGraph; // 边的结构体 typedef struct _EdgeData
{ char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 }EData;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,
则表示”顶点i(即vexs[i])”和”顶点j(即vexs[j])”是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/ void dijkstra(Graph G, int vs, int prev[], int dist[])
{ int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1;
dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。 for (i = 1; i < G.vexnum; i++)
{ // 寻找当前最小的路径; // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++)
{ if (flag[j]==0 && dist[j]<min)
{ min = dist[j];
k = j;
}
} // 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。 for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果 printf("dijkstra(%c): \n", G.vexs[vs]); for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
这里分别给出”邻接矩阵图”和”邻接表图”的迪杰斯特拉算法源码。
/**
* C: Dijkstra算法获取最短路径(邻接矩阵)
*
* @author skywang
* @date 2014/04/24
*/ #include #include #include #include #define MAX 100 // 矩阵最大容量 #define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF) #define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z'))) #define LENGTH(a) (sizeof(a)/sizeof(a[0])) // 邻接矩阵 typedef struct _graph
{ char vexs[MAX]; // 顶点集合 int vexnum; // 顶点数 int edgnum; // 边数 int matrix[MAX][MAX]; // 邻接矩阵 }Graph, *PGraph; // 边的结构体 typedef struct _EdgeData
{ char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 }EData; /*
* 返回ch在matrix矩阵中的位置
*/ static int get_position(Graph G, char ch)
{ int i; for(i=0; iif(G.vexs[i]==ch) return i; return -1;
} /*
* 读取一个输入字符
*/ static char read_char()
{ char ch; do {
ch = getchar();
} while(!isLetter(ch)); return ch;
} /*
* 创建图(自己输入)
*/ Graph* create_graph()
{ char c1, c2; int v, e; int i, j, weight, p1, p2;
Graph* pG; // 输入"顶点数"和"边数" printf("input vertex number: "); scanf("%d", &v); printf("input edge number: "); scanf("%d", &e); if ( v < 1 || e < 1 || (e > (v * (v-1))))
{ printf("input error: invalid parameters!\n"); return NULL;
} if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); // 初始化"顶点数"和"边数" pG->vexnum = v;
pG->edgnum = e; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++)
{ printf("vertex(%d): ", i);
pG->vexs[i] = read_char();
} // 1. 初始化"边"的权值 for (i = 0; i < pG->vexnum; i++)
{ for (j = 0; j < pG->vexnum; j++)
{ if (i==j)
pG->matrix[i][j] = 0; else pG->matrix[i][j] = INF;
}
} // 2. 初始化"边"的权值: 根据用户的输入进行初始化 for (i = 0; i < pG->edgnum; i++)
{ // 读取边的起始顶点,结束顶点,权值 printf("edge(%d):", i);
c1 = read_char();
c2 = read_char(); scanf("%d", &weight);
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2); if (p1==-1 || p2==-1)
{ printf("input error: invalid edge!\n"); free(pG); return NULL;
}
pG->matrix[p1][p2] = weight;
pG->matrix[p2][p1] = weight;
} return pG;
} /*
* 创建图(用已提供的矩阵)
*/ Graph* create_example_graph()
{ char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; int matrix[][9] = { /*A*//*B*//*C*//*D*//*E*//*F*//*G*/ /*A*/ { 0, 12, INF, INF, INF, 16, 14}, /*B*/ { 12, 0, 10, INF, INF, 7, INF}, /*C*/ { INF, 10, 0, 3, 5, 6, INF}, /*D*/ { INF, INF, 3, 0, 4, INF, INF}, /*E*/ { INF, INF, 5, 4, 0, 2, 8}, /*F*/ { 16, 7, 6, INF, 2, 0, 9}, /*G*/ { 14, INF, INF, INF, 8, 9, 0}}; int vlen = LENGTH(vexs); int i, j;
Graph* pG; // 输入"顶点数"和"边数" if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); // 初始化"顶点数" pG->vexnum = vlen; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++)
pG->vexs[i] = vexs[i]; // 初始化"边" for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++)
pG->matrix[i][j] = matrix[i][j]; // 统计边的数目 for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++) if (i!=j && pG->matrix[i][j]!=INF)
pG->edgnum++;
pG->edgnum /= 2; return pG;
} /*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/ static int first_vertex(Graph G, int v)
{ int i; if (v<0 || v>(G.vexnum-1)) return -1; for (i = 0; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1;
} /*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/ static int next_vertix(Graph G, int v, int w)
{ int i; if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1)) return -1; for (i = w + 1; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1;
} /*
* 深度优先搜索遍历图的递归实现
*/ static void DFS(Graph G, int i, int *visited)
{ int w;
visited[i] = 1; printf("%c ", G.vexs[i]); // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走 for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
{ if (!visited[w])
DFS(G, w, visited);
}
} /*
* 深度优先搜索遍历图
*/ void DFSTraverse(Graph G)
{ int i; int visited[MAX]; // 顶点访问标记 // 初始化所有顶点都没有被访问 for (i = 0; i < G.vexnum; i++)
visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++)
{ //printf("\n== LOOP(%d)\n", i); if (!visited[i])
DFS(G, i, visited);
} printf("\n");
} /*
* 广度优先搜索(类似于树的层次遍历)
*/ void BFS(Graph G)
{ int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点访问标记 int i, j, k; for (i = 0; i < G.vexnum; i++)
visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++)
{ if (!visited[i])
{
visited[i] = 1; printf("%c ", G.vexs[i]); queue[rear++] = i; // 入队列 } while (head != rear)
{
j = queue[head++]; // 出队列 for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点 { if (!visited[k])
{
visited[k] = 1; printf("%c ", G.vexs[k]); queue[rear++] = k;
}
}
}
} printf("\n");
} /*
* 打印矩阵队列图
*/ void print_graph(Graph G)
{ int i,j; printf("Martix Graph:\n"); for (i = 0; i < G.vexnum; i++)
{ for (j = 0; j < G.vexnum; j++) printf("%10d ", G.matrix[i][j]); printf("\n");
}
} /*
* prim最小生成树
*
* 参数说明:
* G -- 邻接矩阵图
* start -- 从图中的第start个元素开始,生成最小树
*/ void prim(Graph G, int start)
{ int min,i,j,k,m,n,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = G.vexs[start]; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ )
weights[i] = G.matrix[start][i]; // 将第start个顶点的权值初始化为0。 // 可以理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (i = 0; i < G.vexnum; i++)
{ // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue;
j = 0;
k = 0;
min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < G.vexnum)
{ // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = G.vexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < G.vexnum; j++)
{ // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
} // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++)
{
min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]); if (G.matrix[m][n]// 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start], sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf("\n");
} /*
* 获取图中的边
*/ EData* get_edges(Graph G)
{ int i,j; int index=0;
EData *edges;
edges = (EData*)malloc(G.edgnum*sizeof(EData)); for (i=0;i < G.vexnum;i++)
{ for (j=i+1;j < G.vexnum;j++)
{ if (G.matrix[i][j]!=INF)
{
edges[index].start = G.vexs[i];
edges[index].end = G.vexs[j];
edges[index].weight = G.matrix[i][j];
index++;
}
}
} return edges;
} /*
* 对边按照权值大小进行排序(由小到大)
*/ void sorted_edges(EData* edges, int elen)
{ int i,j; for (i=0; ifor (j=i+1; jif (edges[i].weight > edges[j].weight)
{ // 交换"第i条边"和"第j条边" EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
} /*
* 获取i的终点
*/ int get_end(int vends[], int i)
{ while (vends[i] != 0)
i = vends[i]; return i;
} /*
* 克鲁斯卡尔(Kruskal)最小生成树
*/ void kruskal(Graph G)
{ int i,m,n,p1,p2; int length; int index = 0; // rets数组的索引 int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。 EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边 EData *edges; // 图对应的所有边 // 获取"图中所有的边" edges = get_edges(G); // 将边按照"权"的大小进行排序(从小到大) sorted_edges(edges, G.edgnum); for (i=0; i// 获取第i条边的"起点"的序号 p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号 m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点 n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点 // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路 if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n rets[index++] = edges[i]; // 保存结果 }
} free(edges); // 统计并打印"kruskal最小生成树"的信息 length = 0; for (i = 0; i < index; i++)
length += rets[i].weight; printf("Kruskal=%d: ", length); for (i = 0; i < index; i++) printf("(%c,%c) ", rets[i].start, rets[i].end); printf("\n");
} /*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/ void dijkstra(Graph G, int vs, int prev[], int dist[])
{ int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1;
dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。 for (i = 1; i < G.vexnum; i++)
{ // 寻找当前最小的路径; // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++)
{ if (flag[j]==0 && dist[j]// 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。 for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果 printf("dijkstra(%c): \n", G.vexs[vs]); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
} void main()
{ int prev[MAX] = {0}; int dist[MAX] = {0};
Graph* pG; // 自定义"图"(输入矩阵队列) //pG = create_graph(); // 采用已有的"图" pG = create_example_graph(); //print_graph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 //prim(*pG, 0); // prim算法生成最小生成树 //kruskal(*pG); // kruskal算法生成最小生成树 // dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离 dijkstra(*pG, 3, prev, dist);
}
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
-
158
-
159
-
160
-
161
-
162
-
163
-
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
-
173
-
174
-
175
-
176
-
177
-
178
-
179
-
180
-
181
-
182
-
183
-
184
-
185
-
186
-
187
-
188
-
189
-
190
-
191
-
192
-
193
-
194
-
195
-
196
-
197
-
198
-
199
-
200
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
-
228
-
229
-
230
-
231
-
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240
-
241
-
242
-
243
-
244
-
245
-
246
-
247
-
248
-
249
-
250
-
251
-
252
-
253
-
254
-
255
-
256
-
257
-
258
-
259
-
260
-
261
-
262
-
263
-
264
-
265
-
266
-
267
-
268
-
269
-
270
-
271
-
272
-
273
-
274
-
275
-
276
-
277
-
278
-
279
-
280
-
281
-
282
-
283
-
284
-
285
-
286
-
287
-
288
-
289
-
290
-
291
-
292
-
293
-
294
-
295
-
296
-
297
-
298
-
299
-
300
-
301
-
302
-
303
-
304
-
305
-
306
-
307
-
308
-
309
-
310
-
311
-
312
-
313
-
314
-
315
-
316
-
317
-
318
-
319
-
320
-
321
-
322
-
323
-
324
-
325
-
326
-
327
-
328
-
329
-
330
-
331
-
332
-
333
-
334
-
335
-
336
-
337
-
338
-
339
-
340
-
341
-
342
-
343
-
344
-
345
-
346
-
347
-
348
-
349
-
350
-
351
-
352
-
353
-
354
-
355
-
356
-
357
-
358
-
359
-
360
-
361
-
362
-
363
-
364
-
365
-
366
-
367
-
368
-
369
-
370
-
371
-
372
-
373
-
374
-
375
-
376
-
377
-
378
-
379
-
380
-
381
-
382
-
383
-
384
-
385
-
386
-
387
-
388
-
389
-
390
-
391
-
392
-
393
-
394
-
395
-
396
-
397
-
398
-
399
-
400
-
401
-
402
-
403
-
404
-
405
-
406
-
407
-
408
-
409
-
410
-
411
-
412
-
413
-
414
-
415
-
416
-
417
-
418
-
419
-
420
-
421
-
422
-
423
-
424
-
425
-
426
-
427
-
428
-
429
-
430
-
431
-
432
-
433
-
434
-
435
-
436
-
437
-
438
-
439
-
440
-
441
-
442
-
443
-
444
-
445
-
446
-
447
-
448
-
449
-
450
-
451
-
452
-
453
-
454
-
455
-
456
-
457
-
458
-
459
-
460
-
461
-
462
-
463
-
464
-
465
-
466
-
467
-
468
-
469
-
470
-
471
-
472
-
473
-
474
-
475
-
476
-
477
-
478
-
479
-
480
-
481
-
482
-
483
-
484
-
485
-
486
-
487
-
488
-
489
-
490
-
491
-
492
-
493
-
494
-
495
-
496
-
497
-
498
-
499
-
500
-
501
-
502
-
503
-
504
-
505
-
506
-
507
-
508
-
509
-
510
-
511
-
512
-
513
-
514
-
515
-
516
-
517
-
518
-
519
-
520
-
521
-
522
-
523
-
524
-
525
-
526
-
527
-
528
-
529
-
530
-
531
-
532
-
533
-
534
-
535
-
536
-
537
-
538
-
539
-
540
-
541
-
542
-
543
-
544
-
545
-
546
-
547
-
548
-
549
-
550
-
551
-
552
-
553
-
554
-
555
-
556
-
557
-
558
-
559
-
560
-
561
-
562
-
563
-
564
-
565
-
566
-
567
-
568
-
569
-
570
-
571
-
572
-
573
-
574
-
575
-
576
/**
* C: Dijkstra算法获取最短路径(邻接表)
*
* @author skywang
* @date 2014/04/24
*/ #include #include #include #include #define MAX 100 #define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF) #define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z'))) #define LENGTH(a) (sizeof(a)/sizeof(a[0])) // 邻接表中表对应的链表的顶点 typedef struct _ENode
{ int ivex; // 该边的顶点的位置 int weight; // 该边的权 struct _ENode *next_edge; // 指向下一条弧的指针 }ENode, *PENode; // 邻接表中表的顶点 typedef struct _VNode
{ char data; // 顶点信息 ENode *first_edge; // 指向第一条依附该顶点的弧 }VNode; // 邻接表 typedef struct _LGraph
{ int vexnum; // 图的顶点的数目 int edgnum; // 图的边的数目 VNode vexs[MAX];
}LGraph; /*
* 返回ch在matrix矩阵中的位置
*/ static int get_position(LGraph G, char ch)
{ int i; for(i=0; iif(G.vexs[i].data==ch) return i; return -1;
} /*
* 读取一个输入字符
*/ static char read_char()
{ char ch; do {
ch = getchar();
} while(!isLetter(ch)); return ch;
} /*
* 将node链接到list的末尾
*/ static void link_last(ENode *list, ENode *node)
{
ENode *p = list; while(p->next_edge)
p = p->next_edge;
p->next_edge = node;
} /*
* 创建邻接表对应的图(自己输入)
*/ LGraph* create_lgraph()
{ char c1, c2; int v, e; int i, p1, p2; int weight;
ENode *node1, *node2;
LGraph* pG; // 输入"顶点数"和"边数" printf("input vertex number: "); scanf("%d", &v); printf("input edge number: "); scanf("%d", &e); if ( v < 1 || e < 1 || (e > (v * (v-1))))
{ printf("input error: invalid parameters!\n"); return NULL;
} if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL ) return NULL; memset(pG, 0, sizeof(LGraph)); // 初始化"顶点数"和"边数" pG->vexnum = v;
pG->edgnum = e; // 初始化"邻接表"的顶点 for(i=0; ivexnum; i++)
{ printf("vertex(%d): ", i);
pG->vexs[i].data = read_char();
pG->vexs[i].first_edge = NULL;
} // 初始化"邻接表"的边 for(i=0; iedgnum; i++)
{ // 读取边的起始顶点,结束顶点,权 printf("edge(%d): ", i);
c1 = read_char();
c2 = read_char(); scanf("%d", &weight);
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2); // 初始化node1 node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
node1->weight = weight; // 将node1链接到"p1所在链表的末尾" if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1; else link_last(pG->vexs[p1].first_edge, node1); // 初始化node2 node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
node2->weight = weight; // 将node2链接到"p2所在链表的末尾" if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2; else link_last(pG->vexs[p2].first_edge, node2);
} return pG;
} // 边的结构体 typedef struct _edata
{ char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 }EData; // 顶点 static char gVexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; // 边 static EData gEdges[] = { // 起点 终点 权 {'A', 'B', 12},
{'A', 'F', 16},
{'A', 'G', 14},
{'B', 'C', 10},
{'B', 'F', 7},
{'C', 'D', 3},
{'C', 'E', 5},
{'C', 'F', 6},
{'D', 'E', 4},
{'E', 'F', 2},
{'E', 'G', 8},
{'F', 'G', 9},
}; /*
* 创建邻接表对应的图(用已提供的数据)
*/ LGraph* create_example_lgraph()
{ char c1, c2; int vlen = LENGTH(gVexs); int elen = LENGTH(gEdges); int i, p1, p2; int weight;
ENode *node1, *node2;
LGraph* pG; if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL ) return NULL; memset(pG, 0, sizeof(LGraph)); // 初始化"顶点数"和"边数" pG->vexnum = vlen;
pG->edgnum = elen; // 初始化"邻接表"的顶点 for(i=0; ivexnum; i++)
{
pG->vexs[i].data = gVexs[i];
pG->vexs[i].first_edge = NULL;
} // 初始化"邻接表"的边 for(i=0; iedgnum; i++)
{ // 读取边的起始顶点,结束顶点,权 c1 = gEdges[i].start;
c2 = gEdges[i].end;
weight = gEdges[i].weight;
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2); // 初始化node1 node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
node1->weight = weight; // 将node1链接到"p1所在链表的末尾" if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1; else link_last(pG->vexs[p1].first_edge, node1); // 初始化node2 node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
node2->weight = weight; // 将node2链接到"p2所在链表的末尾" if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2; else link_last(pG->vexs[p2].first_edge, node2);
} return pG;
} /*
* 深度优先搜索遍历图的递归实现
*/ static void DFS(LGraph G, int i, int *visited)
{ int w;
ENode *node;
visited[i] = 1; printf("%c ", G.vexs[i].data);
node = G.vexs[i].first_edge; while (node != NULL)
{ if (!visited[node->ivex])
DFS(G, node->ivex, visited);
node = node->next_edge;
}
} /*
* 深度优先搜索遍历图
*/ void DFSTraverse(LGraph G)
{ int i; int visited[MAX]; // 顶点访问标记 // 初始化所有顶点都没有被访问 for (i = 0; i < G.vexnum; i++)
visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++)
{ if (!visited[i])
DFS(G, i, visited);
} printf("\n");
} /*
* 广度优先搜索(类似于树的层次遍历)
*/ void BFS(LGraph G)
{ int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点访问标记 int i, j, k;
ENode *node; for (i = 0; i < G.vexnum; i++)
visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++)
{ if (!visited[i])
{
visited[i] = 1; printf("%c ", G.vexs[i].data); queue[rear++] = i; // 入队列 } while (head != rear)
{
j = queue[head++]; // 出队列 node = G.vexs[j].first_edge; while (node != NULL)
{
k = node->ivex; if (!visited[k])
{
visited[k] = 1; printf("%c ", G.vexs[k].data); queue[rear++] = k;
}
node = node->next_edge;
}
}
} printf("\n");
} /*
* 打印邻接表图
*/ void print_lgraph(LGraph G)
{ int i,j;
ENode *node; printf("List Graph:\n"); for (i = 0; i < G.vexnum; i++)
{ printf("%d(%c): ", i, G.vexs[i].data);
node = G.vexs[i].first_edge; while (node != NULL)
{ printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
node = node->next_edge;
} printf("\n");
}
} /*
* 获取G中边的权值;若start和end不是连通的,则返回无穷大。
*/ int get_weight(LGraph G, int start, int end)
{
ENode *node; if (start==end) return 0;
node = G.vexs[start].first_edge; while (node!=NULL)
{ if (end==node->ivex) return node->weight;
node = node->next_edge;
} return INF;
} /*
* prim最小生成树
*
* 参数说明:
* G -- 邻接表图
* start -- 从图中的第start个元素开始,生成最小树
*/ void prim(LGraph G, int start)
{ int min,i,j,k,m,n,tmp,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = G.vexs[start].data; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ )
weights[i] = get_weight(G, start, i); for (i = 0; i < G.vexnum; i++)
{ // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue;
j = 0;
k = 0;
min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < G.vexnum)
{ // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = G.vexs[k].data; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < G.vexnum; j++)
{ // 获取第k个顶点到第j个顶点的权值 tmp = get_weight(G, k, j); // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && tmp < weights[j])
weights[j] = tmp;
}
} // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++)
{
min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
tmp = get_weight(G, m, n); if (tmp < min)
min = tmp;
}
sum += min;
} // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start].data, sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf("\n");
} /*
* 获取图中的边
*/ EData* get_edges(LGraph G)
{ int i,j; int index=0;
ENode *node;
EData *edges;
edges = (EData*)malloc(G.edgnum*sizeof(EData)); for (i=0; iwhile (node != NULL)
{ if (node->ivex > i)
{
edges[index].start = G.vexs[i].data; // 起点 edges[index].end = G.vexs[node->ivex].data; // 终点 edges[index].weight = node->weight; // 权 index++;
}
node = node->next_edge;
}
} return edges;
} /*
* 对边按照权值大小进行排序(由小到大)
*/ void sorted_edges(EData* edges, int elen)
{ int i,j; for (i=0; ifor (j=i+1; jif (edges[i].weight > edges[j].weight)
{ // 交换"第i条边"和"第j条边" EData tmp = edges[i];
edges[i] = edges[j];
edges[j] = tmp;
}
}
}
} /*
* 获取i的终点
*/ int get_end(int vends[], int i)
{ while (vends[i] != 0)
i = vends[i]; return i;
} /*
* 克鲁斯卡尔(Kruskal)最小生成树
*/ void kruskal(LGraph G)
{ int i,m,n,p1,p2; int length; int index = 0; // rets数组的索引 int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。 EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边 EData *edges; // 图对应的所有边 // 获取"图中所有的边" edges = get_edges(G); // 将边按照"权"的大小进行排序(从小到大) sorted_edges(edges, G.edgnum); for (i=0; i// 获取第i条边的"起点"的序号 p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号 m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点 n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点 // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路 if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n rets[index++] = edges[i]; // 保存结果 }
} free(edges); // 统计并打印"kruskal最小生成树"的信息 length = 0; for (i = 0; i < index; i++)
length += rets[i].weight; printf("Kruskal=%d: ", length); for (i = 0; i < index; i++) printf("(%c,%c) ", rets[i].start, rets[i].end); printf("\n");
} /*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/ void dijkstra(LGraph G, int vs, int prev[], int dist[])
{ int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = get_weight(G, vs, i); // 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1;
dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。 for (i = 1; i < G.vexnum; i++)
{ // 寻找当前最小的路径; // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++)
{ if (flag[j]==0 && dist[j]// 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。 for (j = 0; j < G.vexnum; j++)
{
tmp = get_weight(G, k, j);
tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果 printf("dijkstra(%c): \n", G.vexs[vs].data); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d\n", G.vexs[vs].data, G.vexs[i].data, dist[i]);
} void main()
{ int prev[MAX] = {0}; int dist[MAX] = {0};
LGraph* pG; // 自定义"图"(自己输入数据) //pG = create_lgraph(); // 采用已有的"图" pG = create_example_lgraph(); //print_lgraph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 //prim(*pG, 0); // prim算法生成最小生成树 //kruskal(*pG); // kruskal算法生成最小生成树 // dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离 dijkstra(*pG, 3, prev, dist);
}
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
-
158
-
159
-
160
-
161
-
162
-
163
-
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
-
173
-
174
-
175
-
176
-
177
-
178
-
179
-
180
-
181
-
182
-
183
-
184
-
185
-
186
-
187
-
188
-
189
-
190
-
191
-
192
-
193
-
194
-
195
-
196
-
197
-
198
-
199
-
200
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
-
228
-
229
-
230
-
231
-
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240
-
241
-
242
-
243
-
244
-
245
-
246
-
247
-
248
-
249
-
250
-
251
-
252
-
253
-
254
-
255
-
256
-
257
-
258
-
259
-
260
-
261
-
262
-
263
-
264
-
265
-
266
-
267
-
268
-
269
-
270
-
271
-
272
-
273
-
274
-
275
-
276
-
277
-
278
-
279
-
280
-
281
-
282
-
283
-
284
-
285
-
286
-
287
-
288
-
289
-
290
-
291
-
292
-
293
-
294
-
295
-
296
-
297
-
298
-
299
-
300
-
301
-
302
-
303
-
304
-
305
-
306
-
307
-
308
-
309
-
310
-
311
-
312
-
313
-
314
-
315
-
316
-
317
-
318
-
319
-
320
-
321
-
322
-
323
-
324
-
325
-
326
-
327
-
328
-
329
-
330
-
331
-
332
-
333
-
334
-
335
-
336
-
337
-
338
-
339
-
340
-
341
-
342
-
343
-
344
-
345
-
346
-
347
-
348
-
349
-
350
-
351
-
352
-
353
-
354
-
355
-
356
-
357
-
358
-
359
-
360
-
361
-
362
-
363
-
364
-
365
-
366
-
367
-
368
-
369
-
370
-
371
-
372
-
373
-
374
-
375
-
376
-
377
-
378
-
379
-
380
-
381
-
382
-
383
-
384
-
385
-
386
-
387
-
388
-
389
-
390
-
391
-
392
-
393
-
394
-
395
-
396
-
397
-
398
-
399
-
400
-
401
-
402
-
403
-
404
-
405
-
406
-
407
-
408
-
409
-
410
-
411
-
412
-
413
-
414
-
415
-
416
-
417
-
418
-
419
-
420
-
421
-
422
-
423
-
424
-
425
-
426
-
427
-
428
-
429
-
430
-
431
-
432
-
433
-
434
-
435
-
436
-
437
-
438
-
439
-
440
-
441
-
442
-
443
-
444
-
445
-
446
-
447
-
448
-
449
-
450
-
451
-
452
-
453
-
454
-
455
-
456
-
457
-
458
-
459
-
460
-
461
-
462
-
463
-
464
-
465
-
466
-
467
-
468
-
469
-
470
-
471
-
472
-
473
-
474
-
475
-
476
-
477
-
478
-
479
-
480
-
481
-
482
-
483
-
484
-
485
-
486
-
487
-
488
-
489
-
490
-
491
-
492
-
493
-
494
-
495
-
496
-
497
-
498
-
499
-
500
-
501
-
502
-
503
-
504
-
505
-
506
-
507
-
508
-
509
-
510
-
511
-
512
-
513
-
514
-
515
-
516
-
517
-
518
-
519
-
520
-
521
-
522
-
523
-
524
-
525
-
526
-
527
-
528
-
529
-
530
-
531
-
532
-
533
-
534
-
535
-
536
-
537
-
538
-
539
-
540
-
541
-
542
-
543
-
544
-
545
-
546
-
547
-
548
-
549
-
550
-
551
-
552
-
553
-
554
-
555
-
556
-
557
-
558
-
559
-
560
-
561
-
562
-
563
-
564
-
565
-
566
-
567
-
568
-
569
-
570
-
571
-
572
-
573
-
574
-
575
-
576
-
577
-
578
-
579
-
580
-
581
-
582
-
583
-
584
-
585
-
586
-
587
-
588
-
589
-
590
-
591
-
592
-
593
-
594
-
595
-
596
-
597
-
598
-
599
-
600
-
601
-
602
-
603
-
604
-
605
-
606
-
607
-
608
-
609
-
610
-
611
-
612
-
613
-
614
-
615
-
616
-
617
-
618
-
619
-
620
-
621
-
622
-
623
-
624
-
625
-
626
-
627
-
628
-
629
-
630
-
631
-
632
-
633
-
634
-
635
-
636
-
637
-
638
-
639
-
640