能力强的人善于解决问题,有智慧的人善于绕过问题。 区别很微妙,小心谨慎做后者。
全部博文(399)
分类: LINUX
2010-09-18 23:49:32
如果重量w1, ..., wn和W都是非负的,那么用动态规划,可以用伪多项式时间解决背包问题。下面描述了无界背包问题的解法。
简便起见,我们假定重量都是正的(wj > 0)。在总重量不超过W的前提下,我们希望总价格最高。对于Y ≤ W,我们将在总重量不超过Y的前提下,总价格所能达到的最高值定义为A(Y)。A(W)即为问题的答案。
显然,A(Y)满足:
其中,pj为第j种物品的价格。
如果总重量为0,总价值也为0。然后依次计算A(0), A(1), ..., A(W),并把每一步骤的结果存入表中供后续步骤使用,完成这些步骤后A(W)即为最终结果。由于每次计算A(Y)都需要检查n种物品,并且需要计算W个A(Y)值,因此动态规划解法的时间复杂度为O(nW)。如果把w1, ..., wn, W都除以它们的最大公因数,算法的时间将得到很大的提升。
尽管背包问题的时间复杂度为O(nW),但它仍然是一个NP完全问题。这是因为W同问题的输入大小并不成线性关系。原因在于问题的输入大小仅仅取决于表达输入所需的比特数。事实上,log W,即表达W所需的比特数,同问题的输入长度成线性关系。