Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1584912
  • 博文数量: 399
  • 博客积分: 8508
  • 博客等级: 中将
  • 技术积分: 5302
  • 用 户 组: 普通用户
  • 注册时间: 2009-10-14 09:28
个人简介

能力强的人善于解决问题,有智慧的人善于绕过问题。 区别很微妙,小心谨慎做后者。

文章分类

全部博文(399)

文章存档

2018年(3)

2017年(1)

2016年(1)

2015年(69)

2013年(14)

2012年(17)

2011年(12)

2010年(189)

2009年(93)

分类: LINUX

2010-09-02 16:48:15

 
//Compute modulus division by 1 << s without a division operator         
const unsigned int n;          // numerator      
const unsigned int s;      
const unsigned int d = 1U << s; // So d will be one of: 1, 2, 4, 8, 16, 32, ...      
unsigned int m;                // m will be n % d      
m = n & (d - 1);       
 
//Compute modulus division by (1 << s) - 1 without a division operator  , 微软面试题 :用位运算实现n%7, 即n%(2^3 - 1) , 答案如下
unsigned int n;                      // numerator     , dp  n%7 =( (n/8)*(8-7) + n%8) %7 = (n>>3 + n&7)%7 , 不断转化,直到括号内小于等于7为止

(1)
m = n>>3 + n&7;
while(m>7)
{
    m = m>>3 + m&7;
}
if(m ==7)    return 0;
else return m;

(2)
const unsigned int s =3;                // s > 0     
const unsigned int d = (1 << s) - 1; // so d is either 1, 3, 7, 15, 31, ...).     
unsigned int m;                      // n % d goes here.     
for (; n > d; n = m)     
{     
  for (m = 0; n; n >>= s)     
  {     
    m += n & d;     
  }     
}     
// Now m is a value from 0 to d, but since with modulus division     
// we want m to be 0 when it is d.     
m = m == d ? 0 : m;     

int add(int x,int y)
{
 int m,n;
 m = x& y;  //需要进位的位
 n = x^y;  //进位后的状态
 while(m)
 {  
   n =  m<<1 ^ n;
   m = m<<1 & n;
 }
 return n;
}
unsigned int div(unsigned int a , unsigned int b)
{
 int i;
 unsigned int m = 0;
 for(i = 1 ; i<= 32 ;i=add(i,1))
 {
   m = m<<1 | a>> 31;
   a = a<<1;
   if(m>=b)
   {
   m = add(m,b);
   a = add(a,1);  //其实可以为a|=1;或a^=1;
   }
 }
 return a;
}
//计算v二进制表示中1的个数
unsigned int v; // count bits set in this (32-bit value)       
     
static const int S[] = {1, 2, 4, 8, 16}; // Magic Binary Numbers       
static const int B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};    

v = (v>>S[0])+ ((v >>S[0]) & B[0]);       
v = (v&B[1])+ ((v>> S[1]) & B[1]);
v = (v&B[2])+ ((v>> S[1]) & B[2]);
v = (v&B[3])+ ((v>> S[1]) & B[3]);
v = (v&B[4])+ ((v>> S[1]) & B[4]); 
//将v比特反转注意最后一位是怎么移到第一位的
// swap odd and even bits    
v = ((v >>S[0]) & B[0]) | ((v & B[0]) <// swap consecutive pairs    
v = ((v >>S[1]) & B[1]) | ((v & B[1]) <// swap nibbles  
v = ((v >>S[2]) & B[2]) | ((v & B[2]) <// swap bytes    
v = ((v >>S[3]) & B[3]) | ((v & B[3]) <// swap 2-byte long pairs    
v = ((v >>S[4]) & B[4]) | ((v & B[4]) <

//Find the log base 2 of an N-bit integer in O(lg(N)) operations  二分查找       
unsigned int v;          // 32-bit value to find the log2 of     
register unsigned int r; // result of log2(v) will go here    
register unsigned int shift;    
   
r =      (v > 0xFFFF) << 4; v >>= r;   
shift = (v > 0xFF    ) << 3; v >>= shift; r |= shift;    
shift = (v > 0xF      ) << 2; v >>= shift; r |= shift;    
shift = (v > 0x3      ) << 1; v >>= shift; r |= shift;    
r |= (v >> 1);    
//Find integer log base 10 of an integer the obvious way       
static unsigned int const PowersOf10[] =     
    {1, 10, 100, 1000, 10000, 100000,    
     1000000, 10000000, 100000000, 1000000000};    

r = (v >= 1000000000) ? 9 : (v >= 100000000) ? 8 : (v >= 10000000) ? 7 :      
    (v >= 1000000) ? 6 : (v >= 100000) ? 5 : (v >= 10000) ? 4 :      
    (v >= 1000) ? 3 : (v >= 100) ? 2 : (v >= 10) ? 1 : 0;     
//Find integer log base 2 of a 32-bit IEEE float      
const float v; // find int(log2(v)), where v > 0.0 && finite(v) && isnormal(v)     
int c;         // 32-bit int c gets the result;     
c = *(const int *) &v;  // OR, for portability:  memcpy(&c, &v, sizeof c);     
c = (c >> 23) - 127;     
//Count the consecutive zero bits (trailing) on the right linearly        
//Count the consecutive zero bits (trailing) on the right by binary search         
unsigned int v;     // 32-bit word input to count zero bits on right     
unsigned int c;     // c will be the number of zero bits on the right,     
                    // so if v is 1101000 (base 2), then c will be 3     
// NOTE: if 0 == v, then c = 31.     
if (v & 0x1)      
{     
  // special case for odd v (assumed to happen half of the time)     
  c = 0;     
}     
else     
{     
  c = 1;     
  if ((v & 0xffff) == 0)  
  {   
    v >>= 16;   
    c += 16; 
  } 
  if ((v & 0xff) == 0)  
  {   
    v >>= 8;   
    c += 8; 
  } 
  if ((v & 0xf) == 0)  
  {   
    v >>= 4; 
    c += 4; 
  } 
  if ((v & 0x3) == 0)  
  {       
    v >>= 2;     
    c += 2;     
  }     
  c -= v & 0x1;     
}            
阅读(943) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~