一个好老好老的老程序员了。
全部博文(915)
分类: C/C++
2012-09-03 10:24:33
在面试的过程中,发现有几家公司都喜欢考这样的一道题,就是在一棵二叉树中,已知这棵二叉树的前序和中序遍历结果,要求写出后序遍历结果。
例如:在一棵二叉树总,前序遍历结果为:ABDGCEFH,中序遍历结果为:DGBAECHF,求后序遍历结果。
我们知道:
前序遍历方式为:根节点->左子树->右子树
中序遍历方式为:左子树->根节点->右子树
后序遍历方式为:左子树->右子树->根节点
从这里可以看出,前序遍历的第一个值就是根节点,然后再中序遍历中找到这个值,那么这个值的左边部分即为当前二叉树的左子树部分前序遍历结果,这个值的右边部分即为当前二叉树的右子树部分前序遍历结果。因此,通过这个分析,可以恢复这棵二叉树,得到这样的一段伪码:
节点 getRoot(前序,中序)
c=前序第一个字符
pos=c在中序中的位置
len1=中序pos左半部分长度
len2=中序pos右半部分长度
新建节点r,令r的元素等于c
r的左儿子=getRoot(前序位置1开始的len1长度部分,中序pos位置的左半部分)
r的右儿子=getRoot(前序位置len1开始右半部分,中序pos位置的右半部分)
return r
如图1示:
图1
输入前序ABDGCEFH,中序DGBAECHF,可以得出
A为该二叉树的根节点
1: BDG为该二叉树左子树的前序
2: DGB为该二叉树左子树的中序
根据1和2可以构建一棵左子树
3: CEFH为该二叉树右子树的前序
4: ECHF为该二叉树右子树的中序
根据3和4可以构建一个右子树
执行至该步骤的时候就得到了该二叉树的云结构,如图2所示,A为根节点,BDG在它的左子树上,CEFG在它的右子树上。
如此递归即可以构建一棵完整的二叉树
图2
下面是c语言的实现方法(该代码的变量p1,p2,i1,i2,tmp请参考图1):
/*
* main.cpp
*
* Created on: 2011-4-11
* Author: boyce
* Email:
*/
#include
#include
struct BTreeNode {
char e;
BTreeNode *left;
BTreeNode *right;
};
typedef BTreeNode* BTree;
BTreeNode *createBTreeNode(char e) {
BTreeNode *nd = new BTreeNode;
nd->e = e;
nd->left = NULL;
nd->right = NULL;
return nd;
}
int findChar(const char *str, int s1, int s2, char c) {
if (!str || s2 < s1 || s1 < 0 || s2 >= strlen(str))
return -1;
for (int i = s1; i <= s2; i++) {
if (str[i] == c)
return i;
}
return -1;
}
BTreeNode *getRoot(char *pre, int p1, int p2, char *in, int i1, int i2) {
char rootCh = pre[p1];
if (!pre || p2 < p1 || p1 < 0 || p2 >= strlen(pre) || !in || i2 < i1 || i1
< 0 || i2 >= strlen(in)) {
return NULL;
}
int tmp = findChar(in, i1, i2, rootCh);
if (tmp < 0) {
return NULL;
}
BTreeNode *nd = createBTreeNode(rootCh);
nd->left = getRoot(pre, p1 + 1, p1 + tmp - i1, in, i1, tmp - 1);
nd->right = getRoot(pre, p1 + tmp - i1 + 1, p2, in, tmp + 1, i2);
return nd;
}
BTree createBTree(char *pre, char *in) {
if (!pre || !in)
return NULL;
return getRoot(pre, 0, strlen(pre) - 1, in, 0, strlen(in) - 1);
}
void printPostOrder(BTree t) {
if (!t)
return;
printPostOrder(t->left);
printPostOrder(t->right);
printf("%c", t->e);
}
void printBTreeNode(BTreeNode *nd, int depth) {
for (int i = 0; i < depth - 1; i++)
printf(" ");
if (depth > 0)
printf("--");
if (!nd) {
printf("*/n");
return;
}
printf("%c/n", nd->e);
printBTreeNode(nd->left, depth + 1);
printBTreeNode(nd->right, depth + 1);
}
void printBTree(BTree t) {
printBTreeNode(t, 0);
}
int countBTree(BTree t) {
if (!t)
return 0;
return countBTree(t->left) + countBTree(t->right) + 1;
}
int main() {
char pre[] = "ABDGCEFH";
char in[] = "DGBAECHF";
BTree t = createBTree(pre, in);
printf("Preorder: %s/n", pre);
printf("Inorder: %s/n", in);
if (countBTree(t) != strlen(pre)) {
printf("No such a binary tree!/n");
return 0;
}
printf("Postorder: ");
printPostOrder(t);
printf("/n");
printf("The BTree is (* means no such node):/n");
printBTree(t);
return 0;
}
下面是输出结果显示: