Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3648430
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2021-06-09 17:07:35

#-*- encoding=utf-8 -*-

import os

import time

import pickle

import numpy as np

import xgboost

import sklearn.metrics as metrics

from ray import tune

from ray.tune.suggest.bohb import TuneBOHB

from ray.tune.schedulers import HyperBandForBOHB

def get_auc_ks(scores, labels):

    """

    计算KS,AUC

    :param scores: list-like, model scores;

    :param labels: list-like, labels;

    :return: tuple(float, float), auc & ks ;

    """

    flg = False

    if isinstance(labels, xgboost.DMatrix):

        flg = True

        labels = labels.get_label()

    fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)

    auc = metrics.auc(fpr, tpr)

    ks = np.max(np.abs(tpr - fpr))

    if flg:

        return [('my_auc', auc), ('KS', ks)]

    else:

        return auc, ks

def metric_ks(pred, dtrain):

    """

    ks metric

    :param estimator: 模型

    :param X: 特征

    :param y: label

    """

    scores = pred

    y = dtrain.get_label()

    fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=1)

    ks = np.max(np.abs(tpr - fpr))

    return 'ks', ks

def custom_metric(pred, dtrain):

    labels = dtrain.get_label()

    scores = pred

    fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)

    auc = metrics.auc(fpr, tpr)

    ks = np.max(np.abs(tpr - fpr))

    return [('auc', auc), ('KS', ks)]

def objective_function(config, checkpoint_dir=None, path=None):

    """

    需要优化的目标函数

    :config: 优化对象,超参范围

    :path: (训练集,OOT文件路径)

    """

    train_path, oot_path = path

    train_mat = xgboost.DMatrix(train_path)

    param = config.copy()

    param["max_depth"] = int(param["max_depth"])

    n_estimators = int(param.pop("n_estimators"))

    result = {}

    cv_results = xgboost.cv(param, dtrain=train_mat, num_boost_round=n_estimators,

                            nfold=5, metrics='logloss', feval=custom_metric, maximize=True,

                            callbacks=[record_evaluation(result, oot_path)])

    test_score = (result["detail_metrics"]["my_oot"]["auc"][-1], result["detail_metrics"]["my_oot"]["KS"][-1])

    valid_score = (result["detail_metrics"]["my_valid"]["auc"][-1], result["detail_metrics"]["my_valid"]["KS"][-1])

    train_score = (result["detail_metrics"]["my_train"]["auc"][-1], result["detail_metrics"]["my_train"]["KS"][-1])

    nfold = len(valid_score[0])

    monitor_metric = sum(valid_score[0]) / nfold

    with tune.checkpoint_dir(step=1) as checkpoint_dir:

        path = os.path.join(checkpoint_dir, "cv_result")

        with open(path, 'wb') as f:

            pickle.dump(cv_results, f)

    return tune.report(valid_auc=monitor_metric,

                       test_score=test_score,

                       valid_score=valid_score,

                       train_score=train_score,

                       done=True)

def record_evaluation(eval_result, oot_path):

    """

    callback记录xgboost.cv的指标结果,包含train, valid, oot

    :eval_result: dict A dictionary to store the evaluation results.

    :oot_path: OOT Data file path

    """

    if not isinstance(eval_result, dict):

        raise TypeError('eval_result has to be a dictionary')

    eval_result.clear()

    oot_mat = xgboost.DMatrix(oot_path)

    def init(env):

        """internal function"""

        for item in env.evaluation_result_list:

            k = item[0]

            pos = k.index('-')

            key = k[:pos]

            metric = k[pos + 1:]

            if key not in eval_result:

                eval_result[key] = {}

            if metric not in eval_result[key]:

                eval_result[key][metric] = []

            if 'detail_metrics' not in eval_result:

                eval_result['detail_metrics'] = {"my_train": {}, "my_valid": {}, "my_oot": {}}

    def callback(env):

        """internal function"""

        if not eval_result:

            init(env)

        for item in env.evaluation_result_list:

            k, v = item[0], item[1]

            pos = k.index('-')

            key = k[:pos]

            metric = k[pos + 1:]

            eval_result[key][metric].append(v)

        tmp = {"my_train": {}, "my_valid": {}, "my_oot": {}}

        for cvpack in env.cvfolds:

            bst = cvpack.bst

            pred_train = bst.predict(cvpack.dtrain)

            pred_valid = bst.predict(cvpack.dtest)

            pred_oot = bst.predict(oot_mat)

            metrics_result_train = dict(custom_metric(pred_train, cvpack.dtrain))

            metrics_result_valid = dict(custom_metric(pred_valid, cvpack.dtest))

            metrics_result_oot = dict(custom_metric(pred_oot, oot_mat))

            for k in metrics_result_oot:

                tmp["my_train"][k] = tmp["my_train"].get(k, [])+ [metrics_result_train[k]]

                tmp["my_valid"][k] = tmp["my_valid"].get(k, [])+ [metrics_result_valid[k]]

                tmp["my_oot"][k] = tmp["my_oot"].get(k, [])+ [metrics_result_oot[k]]

        for k1 in tmp:

            for k2 in tmp[k1]:

                eval_result["detail_metrics"][k1].setdefault(k2, []).append(tmp[k1][k2])

    return callback

def hyperopt(param_space, trainpath, testpath, num_eval, name, obj_funcs, log_path='~/ray_results'):

    """

    贝叶斯自动寻参数

    :param_space: 参数范围,组合范围

    :X_train: 训练集特征

    :y_train: 寻链接标签

    :X_test: 测试集特征

    :y_test: 测试集标签

    :num_eval: 寻参次数

    :log_path: log文件存储路径

    """

    start = time.time()

    path = (trainpath, testpath)

    opt = TuneBOHB(max_concurrent=2)

    bohb = HyperBandForBOHB(time_attr="training_iteration",

                           max_t=num_eval)

    analysis = tune.run(tune.with_parameters(obj_funcs, path=path),

                        config=param_space, num_samples=num_eval, local_dir=log_path,

                        metric='valid_auc', mode='max', search_alg=opt, scheduler=bohb,

                        resources_per_trial={"cpu": 5}, name=name)

    best_params = analysis.get_best_config(metric="valid_auc", mode="max")

    best_params["max_depth"] = int(best_params["max_depth"])

    n_estimators = int(best_params.pop("n_estimators"))

    train_mat = xgboost.DMatrix(trainpath)

    test_mat = xgboost.DMatrix(testpath)

    model = xgboost.train(best_params, train_mat, n_estimators)    

    pred_test = model.predict(test_mat)

    pred_train = model.predict(train_mat)

    print("-----Results-----")

    print("Best model & parameters: {}".format(best_params))

    print("Train Score: {}".format(get_auc_ks(pred_train, train_mat.get_label())))

    print("Test Score: {}".format(get_auc_ks(pred_test, test_mat.get_label())))

    print("Time elapsed: {}".format(time.time() - start))

    print("Parameter combinations evaluated: {}".format(num_eval))

    return None

if __name__ == "__main__":

    trainfile_path = "./train.buffer"

    testfile_path = "./oot.buffer"

    name = 'ppdnew_V2'

    control_overfitting = False

    param = {

            'booster': "gbtree",

            'eta': tune.uniform(0.01, 1),

            'seed': 1,

            'max_depth': tune.uniform(3, 5),

            'n_estimators': tune.uniform(50, 500),

            'min_child_weight': tune.uniform(1, 300),

            'colsample_bytree': tune.uniform(0.6, 1.0),

            'subsample': tune.uniform(0.5, 1),

            'lambda': tune.uniform(0.0, 100),

            'alpha': tune.uniform(0.0, 100),

            'scale_pos_weight': tune.uniform(1, 5),

            'n_jobs': 5

        }

    print("begin tuning")

    hyperopt(param, trainfile_path, testfile_path, 100, name, obj_funcs=objective_function)

阅读(1441) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~