Chinaunix首页 | 论坛 | 博客
  • 博客访问: 103267
  • 博文数量: 30
  • 博客积分: 536
  • 博客等级: 中士
  • 技术积分: 224
  • 用 户 组: 普通用户
  • 注册时间: 2011-12-29 09:23
文章分类
文章存档

2012年(16)

2011年(14)

我的朋友

分类: LINUX

2012-01-01 23:53:19

原文来源——

————————————————————————————————————————————

目录

        虚拟地址和物理地址的概念
    
虚拟内存管理
    
ARM920T的CP15协处理器
    
MMU
     Cache

    
操作MMU和Cache的内核启动代码

    
参考资料 索引

虚拟地址和物理地址的概念

    CPU通过地址来访问内存中的单元,地址有虚拟地址和物理地址之分,如果CPU没有MMU(Memory Management Unit,内存管理单元),或者有MMU但没有启用,CPU核在取指令或访问内存时发出的地址将直接传到CPU芯片的外部地址引脚上,直接被内存芯片(以下称为物理内存,以便与虚拟内存区分)接收,这称为物理地址(Physical Address,以下简称PA),如下图所示。

图 1. 物理地址示意图

     如果CPU启用了MMU,CPU核发出的地址将被MMU截获,从CPU到MMU的地址称为虚拟地址(Virtual Address,以下简称VA),而MMU将这个地址翻译成另一个地址发到CPU芯片的外部地址引脚上,也就是将虚拟地址映射成物理地址,如下图所示 [1]。

图 2. 虚拟地址示意图

     MMU将虚拟地址映射到物理地址是以页(Page)为单位的,对于32位CPU通常一页为4K。例如,虚拟地址0xb700 1000~0xb700 1fff是一个页,可能被MMU映射到物理地址0x2000~0x2fff,物理内存中的一个物理页面也称为一个页框(Page Frame)。

虚拟内存管理

现代操作系统充分利用MMU提供的VA到PA的映射机制来做内存管理,以下称为虚拟内存管理(Virtual Memory Management)。首先看下面的例子:

   例 1. 进程的地址空间

   这是bash进程的虚拟地址空间,32位CPU的虚拟地址空间是4GB,也就是0x0000 0000-0xffff ffff,该进程占用的地址范围近似为0x0000 0000-0xbfff ffff,地址范围0xc000 0000-0xffff ffff由内核占用,用户进程不允许访问。在这个bash进程的地址空间中,从0x0804 8000开始的668K的权限为r-x--,表示代码段,从0x080e f000开始的24K的权限是rw---,表示数据段,从0x080f 5000开始的2056K的权限也是rw---,但是没有对应任何磁盘文件,而是用[ anon ](anonymous,匿名)来表示,这是堆所占的空间,从0xb7c6 d000开始是共享库和资源文件的映射空间,每个共享库也分为代码段和数据段,用不同的权限表示,可以看到,从堆空间到下面的共享库映射空间之间有很大的 地址空洞,最末从0xbfad 4000开始的84K是栈空间。

   为什么需要虚拟内存管理呢?可以从以下几个方面来理解。

   第一,让每个进程有独立的地址空间是引入虚拟内存管理的最主要目的。所谓独立的地址空间是指,不同进程中的同一个VA被MMU映射到不同的PA,并且在某 一个进程中访问任何地址都不可能访问到另外一个进程的数据,这样使得任何一个进程由于程序BUG或恶意代码所导致的非法内存访问都不会意外改写其它进程的 数据,不会影响其它进程的运行,从而保证了整个系统的稳定性。另一方面,每个进程都认为自己独占4GB的地址空间,编写程序会比较方便,不必为每个进程分 配一个地址范围,而是每个进程都可以使用一个完整的地址空间中的任何地址。

   我们继续用上面的例子来理解,再打开一个shell窗口,用pmap命令看一下这个新的bash进程的地址空间,可以发现和刚才的地址空间布局差不多:

   该进程也占用了0x0000 0000-0xbfff ffff的地址空间,代码段也是从0x0804 8000开始的668K,数据段也是从0x080e f000开始的24K,共享库的内存布局也差不多。这个进程和刚才的例子是同一个系统中同时运行着的两个进程,它们都认为自己占有0x0000 0000-0xbfff ffff的地址空间,并且它们的数据段的地址范围是重合的,但是两个进程各自干各自的事情,显然数据段中的数据是不同的,正是因为不同进程中的同一个VA 被映射到了不同的PA,所以两个进程的数据段其实是在不同的物理地址上,如下图所示。

图 4. 进程地址空间是独立的

    从图中还可以看到,两个进程都是bash进程,代码段是一样的,并且代码段是只读的,不会被改写,因此操作系统会安排两个进程的代码段共享相同的物理内 存。由于每个进程都有自己的一套VA到PA的映射表,整个地址空间中的任何VA都在每个进程自己的映射表中查找相应的物理地址,因此不可能访问到其它进程 的地址,也就没有可能意外改写其它进程的数据。

    第二,引入VA到PA的映射也会给分配和释放内存带来方便,物理上不连续的空间可以映射为逻辑上连续的虚拟地址空间。比如要malloc一块很大的内存空 间,而物理内存虽然有足够的空闲内存,却没有足够大的连续空闲内存,这时就可以分配多个不连续的物理页面,而映射为连续的虚拟地址范围。如下图所示。

图 5. 不连续的PA可以映射为连续的VA

    第三,一个系统如果同时运行着很多进程,为各进程分配的内存之和可能会大于实际可用的物理内存,虚拟内存管理使得这种情况下各进程仍然能够正常运行。因为 各进程分配的只不过是虚拟内存的页,这个页的内容可以映射到物理内存的页框,也可以临时保存到磁盘上而不占用物理内存的页框,磁盘上这一部分称为交换设备 (Swap Device),可能是一个磁盘分区,也可能是一个磁盘文件。当物理内存不够时将物理内存中不常用的页框临时保存到磁盘上,而当用到这些页框时再从磁盘加 载回内存,这称为换页(Paging)因此:
    系统中可分配的内存总量 = 物理内存的大小 + 交换设备的大小

    如下图所示。第一张图是换出(Page out),将物理页面的内容保存到磁盘,并解除地址映射,释放物理页面。第二张图是换入(Page in),从空闲的物理页面中分配一个,将磁盘暂存的页面加载回内存,并建立地址映射。

图 6. 换页

    第四,虚拟内存管理可以控制物理页面的访问权限。物理内存本身是不限制访问的,任何地址都可以读写,而操作系统要求实现各种不同的访问权限,在先前的例子 中我们已经看到,代码段要求是rx的,数据段要求是rw的,用户进程不能访问属于内核的地址空间,这些都是操作系统和MMU配合实现的。

    MMU中还实现了一种访问限制是关于Cache的。Cache(高速缓存)是CPU内的一小块高速RAM,用来缓存最近访问过的内存数据,CPU访问 Cache的速度是访问内存速度的数十倍,所以有效地利用Cache可以大大提高计算机的整体性能。CPU核要访问数据时首先发出VA,Cache利用 VA查找相应的数据有没有被缓存[2],如果有就通知CPU核,如果是读操作就直接将Cache中的数据传给CPU核中的寄存器,如果是写操作就直接改写 Cache中的数据,而不需要访问物理内存。但是,有些VA所对应的PA并不是物理内存中的地址而是设备寄存器的地址,对这些寄存器进行读写并不是为了保 存数据,而是对设备做特殊操作,这种VA通常是不允许缓存的,因为如果缓存了,对VA的读写将只在Cache中起作用,而不会传到设备寄存器对设备进行操 作。以串口的收发寄存器为例,如果收发寄存器地址被缓存了会出现什么问题呢?如下图所示。

    如果发送寄存器的地址被缓存起来,CPU核往发送寄存器的地址做写操作都写到Cache中去了,发送寄存器并没有及时得到数据,也就不能及时发送,此 外,CPU核先后发出的1、2、3三个数据都会写到Cache中的同一个地址,最后Cache中只保存了第3个数据,如果这时Cache的数据写回到发送 寄存器去,只能把第3个数据发送出去,前两个数据就丢失了。与此类似,如果接收寄存器的地址被缓存起来,CPU核在读第1个数据时,Cache会从接收寄 存器读进来缓存,然而接收寄存器后面收到2、3两个数据Cache并不知道,因为Cache把接收寄存器当作内存,并且相信内存中的数据是不会自己变的, 所以以后每次CPU核读接收寄存器时,Cache都提供给CPU核第1个数据。

阅读(1189) | 评论(1) | 转发(0) |
给主人留下些什么吧!~~

arizona_dale2012-11-22 09:37:26

能帮忙把图片重新贴一下吗?谢谢