在 Linux 下制作动态链接库,“标准” 的做法是编译成位置无关代码(Position Independent Code,PIC),然后链接成一个动态链接库。
经常遇到的一个问题是:-fPIC 是不是必需,因为好像不加经常也能正常运行,只是创建 .so 的时候会有一个警告。
搜索、试验了一下,答案似乎是这样:
(1) 通常的建议是始终加上 -fPIC 生成位置无关代码;
(2) AMD64 下,必须使用位置无关代码,否则连接失败:
relocation R_X86_64_32S against `a local symbol' can not be used when making a shared object; recompile with -fPIC
(3) IA32 下,连接成功,但有警告:
warning: creating a DT_TEXTREL in object.
这样的 .so 文件可以完全正常工作。
可执行文件在链接时就知道每一行代码、每一个变量会被放到线性地址空间的什么位置,因此这些地址可以都作为常数写到代码里面。对动态库,这就不行了,这要等到加载时才知道。无非下面两种方法:
(1) 可重定位代码(relocatable code):Windows DLL 以及不使用 -fPIC 的 Linux SO。
生成动态库时假定它被加载在地址 0 处。加载时它会被加载到一个地址(base),这时要进行一次重定位(relocation),把代码、数据段中所有的地址加上这个base 的值。这样代码运行时就能使用正确的地址了。
(2) 位置无关代码(position independent code):使用 -fPIC 的 Linux SO。
这样的代码本身就能被放到线性地址空间的任意位置,无需修改就能正确执行。通常的方法是获取指令指针(如 IA32 的 EIP 寄存器)的值,加上一个偏移得到全局变量/函数的地址。
(1) PIC 的缺点主要就是代码有可能长一些。例如 IA32,由于不能直接使用 [EIP+constant] 这样的寻址方式,甚至不能直接将 EIP 的值交给其他寄存器,要用到GOT(global offset table)来定位全局变量和函数。这样导致代码的效率略低。
(2) PIC 的加载速度稍快,因为不需要做重定位。
(3) 多个进程引用同一个 PIC 动态库时,可以共用内存。这一个库在不同进程中的虚拟地址不同,但操作系统显然会把它们映射到同一块物理内存上。
对于可重定位代码,则必须为每个库都在物理内存中复制一份副本,因为需要修改其中的地址。
当然,主流现代操作系统都启用了分页内存机制,这使得重定位时可以使用 COW(copy on write)来节省内存(32 位 Windows 就是这样做的);
然而,页面的粒度还是比较大的(例如 IA32 上是 4KiB),至少对于代码段来说能节省的相当有
arm-none-linux-gnueabi-gcc sbs.c -fPIC -shared -o libsbs.so
arm-none-linux-gnueabi-gcc -fPIC -shared sbs.c -o libsbs.so -I./include
arm-none-linux-gnueabi-gcc -fPIC -shared decoder_mjpeg.c -o libdecoder_mjpeg.so -I./include
阅读(949) | 评论(0) | 转发(0) |