Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2461350
  • 博文数量: 392
  • 博客积分: 7040
  • 博客等级: 少将
  • 技术积分: 4138
  • 用 户 组: 普通用户
  • 注册时间: 2009-06-17 13:03
个人简介

范德萨发而为

文章分类

全部博文(392)

文章存档

2017年(5)

2016年(19)

2015年(34)

2014年(14)

2013年(47)

2012年(40)

2011年(51)

2010年(137)

2009年(45)

分类: 服务器与存储

2010-01-27 10:33:17

hadoop 0.20 程式開發
eclipse plugin + Makefile

零. 前言

  • 開發hadoop 需要用到許多的物件導向語法,包括繼承關係、介面類別,而且需要匯入正確的classpath,否則寫hadoop程式只是打字練習...
  • 用類 vim 來處理這種複雜的程式,有可能會變成一場惡夢,因此用eclipse開發,搭配mapreduce-plugin會事半功倍。
  • 早在hadoop 0.19~0.16之間的版本,筆者就試過各個plugin,每個版本的plugin都確實有大大小小的問題,如:hadoop plugin 無法正確使用、無法run as mapreduce。hadoop0.16搭配IBM的hadoop_plugin 可以提供完整的功能,但是,老兵不死,只是凋零...
  • 子曰:"逝者如斯夫,不捨晝夜",以前寫的文件也落伍了,要跟上潮流,因此此篇的重點在:用eclipse 3.4.2 開發hadoop 0.20程式,並且測試撰寫的程式運作在hadoop平台上
  • 以下是我的作法,如果你有更好的作法,或有需要更正的地方,請與我聯絡
單位 作者 Mail
國家高速網路中心-格網技術組 Wei-Yu Chen waue @ nchc.org.tw

0.0 Info Update

  • Last Update: 2010/01/22

最新版本的 Eclipse 3.5 搭配 Ubuntu 9.04 + hadoop-eclipse-plugin 0.20.1 ,初步測試功能皆可正常運作

但 Ubuntu 9.10 的 各版本 Eclipse , 似乎會有 gtk 圖形介面的bug ,有此一說增加 GDK_NATIVE_WINDOWS=1 就可以解決問題,但經過初步測試似乎無用

0.1 環境說明

  • ubuntu 8.10
  • sun-java-6
  • eclipse 3.4.2
  • hadoop 0.20.0

0.2 目錄說明

  • 使用者:waue
  • 使用者家目錄: /home/waue
  • 專案目錄 : /home/waue/workspace
  • hadoop目錄: /opt/hadoop

一、安裝

安裝的部份沒必要都一模一樣,僅提供參考,反正只要安裝好java , hadoop , eclipse,並清楚自己的路徑就可以了

1.1. 安裝java

首先安裝java 基本套件

$ sudo apt-get install java-common sun-java6-bin sun-java6-jdk sun-java6-jre

1.1.1. 安裝sun-java6-doc

1 將javadoc (jdk-6u10-docs.zip) 下載下來

2 下載完後將檔案放在 /tmp/ 下

3 執行

$ sudo apt-get install sun-java6-doc

1.2. ssh 安裝設定

$ apt-get install ssh 
$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ ssh localhost

執行ssh localhost 沒有出現詢問密碼的訊息則無誤

1.3. 安裝hadoop

安裝hadoop0.20到/opt/並取目錄名為hadoop

$ cd ~
$ wget
$ tar zxvf hadoop-0.20.0.tar.gz
$ sudo mv hadoop-0.20.0 /opt/
$ sudo chown -R waue:waue /opt/hadoop-0.20.0
$ sudo ln -sf /opt/hadoop-0.20.0 /opt/hadoop
  • 編輯 /opt/hadoop/conf/hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-6-sun
export HADOOP_HOME=/opt/hadoop
export PATH=$PATH:/opt/hadoop/bin
  • 編輯 /opt/hadoop/conf/core-site.xml


fs.default.name
hdfs://localhost:9000


hadoop.tmp.dir
/tmp/hadoop/hadoop-${user.name}


  • 編輯 /opt/hadoop/conf/hdfs-site.xml


dfs.replication
1


  • 編輯 /opt/hadoop/conf/mapred-site.xml


mapred.job.tracker
localhost:9001


  • 啟動
    $ cd /opt/hadoop
    $ source /opt/hadoop/conf/hadoop-env.sh
    $ hadoop namenode -format
    $ start-all.sh
    $ hadoop fs -put conf input
    $ hadoop fs -ls
  • 沒有錯誤訊息則代表無誤

1.4. 安裝eclipse

  • 在此提供兩個方法來下載檔案
    • 方法一:下載 ,並且放這檔案到家目錄
    • 方法二:貼上指令
      $ cd ~
      $ wget
  • eclipse 檔已下載到家目錄後,執行下面指令:

$ cd ~
$ tar -zxvf eclipse-SDK-3.4.2-linux-gtk.tar.gz
$ sudo mv eclipse /opt
$ sudo ln -sf /opt/eclipse/eclipse /usr/local/bin/

二、 建立專案

2.1 安裝hadoop 的 eclipse plugin

  • 匯入hadoop 0.20.0 eclipse plugin

$ cd /opt/hadoop
$ sudo cp /opt/hadoop/contrib/eclipse-plugin/hadoop-0.20.0-eclipse-plugin.jar /opt/eclipse/plugins
$ sudo vim /opt/eclipse/eclipse.ini
  • 可斟酌參考eclipse.ini內容(非必要)

-startup
plugins/org.eclipse.equinox.launcher_1.0.101.R34x_v20081125.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.gtk.linux.x86_1.0.101.R34x_v20080805
-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
512m
-vmargs
-Xms40m
-Xmx512m

2.2 開啟eclipse

  • 打開eclipse

$ eclipse &

一開始會出現問你要將工作目錄放在哪裡:在這我們用預設值


PS: 之後的說明則是在eclipse 上的介面操作


2.3 選擇視野

window -> open pers.. -> other.. -> map/reduce


設定要用 Map/Reduce 的視野


使用 Map/Reduce 的視野後的介面呈現


2.4 建立專案

file -> new -> project -> Map/Reduce -> Map/Reduce Project -> next


建立mapreduce專案(1)


建立mapreduce專案的(2)

project name-> 輸入 : icas (隨意)
use default hadoop -> Configur Hadoop install... -> 輸入: "/opt/hadoop" -> ok
Finish


2.5 設定專案

由於剛剛建立了icas這個專案,因此eclipse已經建立了新的專案,出現在左邊視窗,右鍵點選該資料夾,並選properties


Step1. 右鍵點選project的properties做細部設定


Step2. 進入專案的細部設定頁

hadoop的javadoc的設定(1)

  • java Build Path -> Libraries -> hadoop-0.20.0-ant.jar
  • java Build Path -> Libraries -> hadoop-0.20.0-core.jar
  • java Build Path -> Libraries -> hadoop-0.20.0-tools.jar
    • 以 hadoop-0.20.0-core.jar 的設定內容如下,其他依此類推

source ...-> 輸入:/opt/opt/hadoop-0.20.0/src/core
javadoc ...-> 輸入:file:/opt/hadoop/docs/api/

Step3. hadoop的javadoc的設定完後(2)


Step4. java本身的javadoc的設定(3)

  • javadoc location -> 輸入:file:/usr/lib/jvm/java-6-sun/docs/api/


設定完後回到eclipse 主視窗

2.6 連接hadoop server


Step1. 視窗右下角黃色大象圖示"Map/Reduce Locations tag" -> 點選齒輪右邊的藍色大象圖示:


Step2. 進行eclipse 與 hadoop 間的設定(2)

Location Name -> 輸入:hadoop  (隨意)
Map/Reduce Master -> Host-> 輸入:localhost
Map/Reduce Master -> Port-> 輸入:9001
DFS Master -> Host-> 輸入:9000
Finish

設定完後,可以看到下方多了一隻藍色大象,左方展開資料夾也可以秀出在hdfs內的檔案結構


三、 撰寫範例程式

  • 之前在eclipse上已經開了個專案icas,因此這個目錄在:
    • /home/waue/workspace/icas
  • 在這個目錄內有兩個資料夾:
    • src : 用來裝程式原始碼
    • bin : 用來裝編譯後的class檔
  • 如此一來原始碼和編譯檔就不會混在一起,對之後產生jar檔會很有幫助
  • 在這我們編輯一個範例程式 :

3.1 mapper.java

  1. new

File -> new -> mapper


  1. create

source folder-> 輸入: icas/src
Package : Sample
Name -> : mapper

  1. modify

package Sample;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class mapper extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

建立mapper.java後,貼入程式碼


3.2 reducer.java

  1. new
  • File -> new -> reducer


  1. create

source folder-> 輸入: icas/src
Package : Sample
Name -> : reducer

  1. modify

package Sample;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class reducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
  • File -> new -> Map/Reduce Driver


3.3 .java (main function)

  1. new

建立WordCount.java,此檔用來驅動mapper 與 reducer,因此選擇 Map/Reduce Driver


  1. create
source folder-> 輸入: icas/src
Package : Sample
Name -> : WordCount.java

  1. modify
package Sample;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(mapper.class);

job.setCombinerClass(reducer.class);
job.setReducerClass(reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

三個檔完成後並存檔後,整個程式建立完成


  • 三個檔都存檔後,可以看到icas專案下的src,bin都有檔案產生,我們用指令來check

$ cd workspace/icas
$ ls src/Sample/
mapper.java reducer.java WordCount.java
$ ls bin/Sample/
mapper.class reducer.class WordCount.class

四、測試範例程式

  • 由於hadoop 0.20 此版本的eclipse-plugin依舊不完整 ,如:
    • 右鍵點選WordCount.java -> run as -> run on Hadoop :沒有效果

  • 因此,4.1 提供一個eclipse 上解除 run-on-hadoop 封印的方法。而4.2 則是避開run-on-hadoop 這個功能,用command mode端指令的方法執行。

4.1 解除run-on-hadoop封印

有一熱心的hadoop使用者提供一個能讓 run-on-hadoop 這個功能恢復的方法。

原因是hadoop 的 eclipse-plugin 也許是用eclipse europa 這個版本開發的,而eclipse 的各版本 3.2 , 3.3, 3.4 間也都有或多或少的差異性存在。

因此如果先用eclipse europa 來建立一個新專案,之後把europa的eclipse這個版本關掉,換用eclipse 3.4開啟,之後這個專案就能用run-on-mapreduce 這個功能囉!

有興趣的話可以試試!(感謝逢甲資工所謝同學)

4.2 運用終端指令

4.2.1 產生Makefile 檔

$ cd /home/waue/workspace/icas/
$ gedit Makefile
  • 輸入以下Makefile的內容
    JarFile="sample-0.1.jar"
    MainFunc="Sample.WordCount"
    LocalOutDir="/tmp/output"

    all:help
    jar:
    jar -cvf ${JarFile} -C bin/ .

    run:
    hadoop jar ${JarFile} ${MainFunc} input output

    clean:
    hadoop fs -rmr output

    output:
    rm -rf ${LocalOutDir}
    hadoop fs -get output ${LocalOutDir}
    gedit ${LocalOutDir}/part-r-00000 &

    help:
    @echo "Usage:"
    @echo " make jar - Build Jar File."
    @echo " make clean - Clean up Output directory on HDFS."
    @echo " make run - Run your MapReduce code on Hadoop."
    @echo " make output - Download and show output file"
    @echo " make help - Show Makefile options."
    @echo " "
    @echo "Example:"
    @echo " make jar; make run; make output; make clean"

4.2.2 執行

  • 執行Makefile,可以到該目錄下,執行make [參數],若不知道參數為何,可以打make 或 make help
  • make 的用法說明
$ cd /home/waue/workspace/icas/
$ make
Usage:
make jar - Build Jar File.
make clean - Clean up Output directory on HDFS.
make run - Run your MapReduce code on Hadoop.
make output - Download and show output file
make help - Show Makefile options.

Example:
make jar; make run; make output; make clean
  • 下面提供各種make 的參數

make jar

  • 1. 編譯產生jar檔

$ make jar

make run

  • 2. 跑我們的wordcount 於hadoop上
$ make run
  • make run基本上能正確無誤的運作到結束,因此代表我們在eclipse編譯的程式可以順利在hadoop0.20的平台上運行。
  • 而回到eclipse視窗,我們可以看到下方視窗run完的job會呈現出來;左方視窗也多出output資料夾,part-r-00000就是我們的結果檔


  • 因為有設定完整的javadoc, 因此可以得到詳細的解說與輔助

make output

  • 3. 這個指令是幫助使用者將結果檔從hdfs下載到local端,並且用gedit來開啟你的結果檔
$ make output

make clean

  • 4. 這個指令用來把hdfs上的output資料夾清除。如果你還想要在跑一次make run,請先執行make clean,否則hadoop會告訴你,output資料夾已經存在,而拒絕工作喔!

$ make clean

五、結論

  • 搭配eclipse ,我們可以更有效率的開發hadoop
  • hadoop 0.20 與之前的版本api以及設定都有些改變,因此hadoop 環境的設定,需要看; 而如何使用 的api,則可以看 /opt/hadoop/src/example/ 裡面的程式碼來提供初步的構想
阅读(6279) | 评论(4) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2010-05-24 15:59:29

我整明白了,是因为用ECLIPSE在生成JAR文件时,我没有点最后的主函数入口点。 呵呵~~最后的运行命令是:hadoop jar word.jar input output 就行了嘿嘿~~ 谢谢~~

chinaunix网友2010-05-24 15:28:00

谢谢,后来发现了,真不好意思 现在有个问题,我生成了JAR,用的是ECLIPSE3.3.2版本,然后可以执行run on as hadoop 但是我把这个文件拷到LINUX下,(我的是虚拟机CYGWIN)说少一个文件。 文件:word.jar 然后我运行命令: bin/hadoop jar word.jar input output 然后系统说: Exception in thread "main" java.lang.ClassNotFoundException: main 是不是因为上面的MAKEFILE没有弄那? 应该是这个吧:MainFunc="Sample.WordCount" 请问如果不写MAKEFILE应该也行吧,那么这个Sample.WordCount是主函数入口点吗?

jiangwen1272010-05-12 09:10:07

很可能是没有import包含JobConf的这个路径。 加入import org.apach.hadoop.conf.*;试试

chinaunix网友2010-05-07 11:09:33

您好!阁下的很详细,很强大。 但是小生遇到了一个问题,在招着阁下写的WORDCOUNT 部分代码时出现了错误: JobConf cannot be resolved to a type 这个是怎么回事哪? 谢谢:)