EMAIL:manshukwan2013@gmail.com
全部博文(624)
分类:
2007-05-17 11:58:27
46
-14
-28
60
99
-67
117
-85
-78
110
-92
124
35
-3
-21
53
-24
56
34
-2
-89
121
-79
111
120
-88
98
-66
-25
57
47
-15
103
-71
-81
113
-20
52
-6
38
61
-29
43
-11
106
-74
-96
128
-93
125
107
-75
42
-10
64
-32
-7
39
-17
49
-84
116
102
-70
59
-27
-13
45
-80
112
-90
122
97
-65
119
-87
54
-22
-4
36
-1
33
55
-23
118
-86
100
-68
-91
123
-77
109
-16
48
58
-26
114
-82
-72
104
63
-31
41
-9
-18
50
-8
40
127
-95
-73
105
-76
108
126
-94
-5
37
-19
51
44
-12
62
-30
-69
101
115
-83
說明:
(1) 組成數:正負的1~128
(2) 將綠格(含負數的格)看成K=1,2,3得負數時
K=1,行得256,依序每兩列(共8份)也是256
K=2, 行得33024,依序每兩列(共8份)也是33024
K=3, 行得4112512,依序每兩列(共8份)也是4112512
特別指出:矩陣的兩對角線也是K=1,2,3
如=46k-14 k -28 k +60 k +99 k -67 k +117 k -85 k -78 k +110 k -92 k +124 k +35 k -3 k -21 k +53 k
=46 k -14 k +34 k -2 k -20 k +55 k +64 k -32 k +97 k -65 k -77 k +109 k +127 k -95 k +115 k -83 k
=46 k -14 k -24 k +56 k +103 k -71 k -93 k +125 k +59 k -27 k -1 k +33 k +114 k -82 k -76 k +108 k
=(k=1得256, k=2得33024, k=3得4112512)
(3) 將負數看成正數時, 是一幅K=1,2的幻矩陣
且行的兩數差是32,性質等同à8x16階k=1,2幻矩陣1