Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4235413
  • 博文数量: 176
  • 博客积分: 10059
  • 博客等级: 上将
  • 技术积分: 4681
  • 用 户 组: 普通用户
  • 注册时间: 2006-03-24 12:27
文章分类

全部博文(176)

文章存档

2012年(1)

2011年(4)

2010年(14)

2009年(71)

2008年(103)

分类:

2008-03-22 18:52:57

    树在计算机领域中也有着广泛的应用,例如在编译程序中,用树来表示源程序的语法结构;在数据库系统中,可用树来组织信息;在分析算法的行为时,可用树来描述其执行过程。  

    本文主要对二叉树进行讨论。并分析二叉树的常用操作及算法,其常用操作有:查找、插入、删除、遍历等。树由一系列的节点有序的组成。下面看节点的定义:

package zieckey.datastructure.study.tree;

/**
 *
 * 树节点定义
 * @author zieckey
 *
 */

public class Node
{
    int        iData;        // data used as key value

    double    fData;        // other data

    Node    leftChild;    // this node's left child

    Node    rightChild; // this node's right child


    
    
    public Node( int data, double data2 )
    {
        iData = data;
        fData = data2;
        leftChild = null;
        rightChild = null;
    }

    //拷贝构造函数

    public Node( Node n)
    {
        this.fData = n.fData;
        this.iData = n.iData;
        this.leftChild = n.leftChild;
        this.rightChild = n.rightChild;
    }
    
    /**
     * 将节点n的值赋给当前节点
     * @param n
     */

    public void copy( Node n)
    {
        this.fData = n.fData;
        this.iData = n.iData;
        this.leftChild = n.leftChild;
        this.rightChild = n.rightChild;
    }
    
    public String toString()
    {
        return "("+ iData + ","+fData+")";
    }

    public void displayNode()
    {
        System.out.print("("+ iData + ","+fData+") ");
    }
}

树的Java代码实现:

注意程序中的注释。

package zieckey.datastructure.study.tree;

/**
 *
 * 树及树的常用操作
 *
 * @author zieckey
 *
 */

public class Tree
{
    private Node    root;    // the only data field in Tree


    public Tree()
    {
        root = null;
    }
    
    public Node find( int key )
    {
        Node currentNode = root;
        while( currentNode.iData != key )
        {
            if ( key<currentNode.iData )    //如果key小于当前的值,去左子树找

            {
                currentNode = currentNode.leftChild;
            } else                            //如果key大于或等于当前的值,去右子树找

            {
                currentNode = currentNode.rightChild;
            }
            
            if ( null == currentNode )        //如果为空,表明没有找到

            {
                return null;//返回null

            }
        }
        return currentNode;                    //当前的Node就是要找的对象

    }

    public void insert( int id, double dd )
    {
        Node newNode = new Node(id,dd);
        if ( null == root )//如果树为空,待插入节点就做为根节点

        {
            root = newNode;
            return;
        }
        Node currentNode = root;
        Node parentNode = currentNode;//parentNode保存待插入节点的位子,即它将成为待插入节点的父节点

        
        while( null != currentNode )
        {
            parentNode = currentNode;
            if ( id<currentNode.iData )    //如果key小于当前的值,去左子树找

            {
                currentNode = currentNode.leftChild;
            } else                            //如果key大于或等于当前的值,去右子树找

            {
                currentNode = currentNode.rightChild;
            }
        }
        
        //while循环完后,parentNode就是待插入节点的父节点

        if ( id<parentNode.iData )
        {
            parentNode.leftChild = newNode;
        }else
        {
            parentNode.rightChild = newNode;
        }
    }

    /**
     * 中序遍历树
     *
     * 若二叉树非空,则依次执行如下操作:
     *     (1)遍历左子树;
     * (2)访问根结点;
     *         (3)遍历右子树。
     *
     * @param localRoot
     */

    public void inOrderTraveral( Node localRoot )
    {
        if ( null != localRoot )
        {
            inOrderTraveral( localRoot.leftChild );
            localRoot.displayNode( );
            inOrderTraveral( localRoot.rightChild );
        }
    }
    
    /**
     * 找最小节点
     * @return 返回最小节点
     */

    public Node minimum( )
    {
        Node currentNode = root, minimumNode = null;
        
        while ( null != currentNode )
        {
            minimumNode = currentNode;
            currentNode = currentNode.leftChild;
        }
        
        return minimumNode;
    }
    
    /**
     * 找最大节点
     * @return 返回最大节点
     */

    public Node maximum( )
    {
        Node currentNode = root, maximumNode = null;
        
        while ( null != currentNode )
        {
            maximumNode = currentNode;
            currentNode = currentNode.rightChild;
        }
        
        return maximumNode;
    }
    
    /**
     * 删除节点为key的节点
     * @param key
     * @return
     */

    public boolean delete( int key )
    {
        Node currentNode = root;
        Node parentNode = root;
        boolean isLeftChild = true;//如果 currentNode 是 parentNode的左子节点为真,否则为假

        
        while ( currentNode.iData!=key )
        {
            parentNode = currentNode;
            
            if ( key < currentNode.iData )
            {
                isLeftChild = true;
                currentNode = currentNode.leftChild;
            }else
            {
                isLeftChild = false;
                currentNode = currentNode.rightChild;
            }
            
            //没有找到待删除的节点

            if ( null == currentNode )
            {
                return false;
            }
        }//end while

        
        /**
         * 已经找到要删除的节点,该节点为 currentNode,其父节点为 parentNode,关系有isLeftChild确定
         * 下面分三种情况讨论,分别为currentNode节点有0个、1个、2个子节点
         */
        
        
        /**
         * 第一种情况:
         * currentNode没有子节点,分两步处理:
         *        (1)如果 currentNode == root ,直接 currentNode = null即可
         *        (2)否则,根据isLeftChild来断开parentNode与currentNode的关系
         */

        if ( null == currentNode.leftChild && null == currentNode.rightChild )
        {
            if ( root == currentNode )
            {
                root = null;
            } else
            {
                if ( true == isLeftChild )
                {
                    parentNode.leftChild = null;
                    currentNode = null;
                }else
                {
                    parentNode.rightChild = null;
                    currentNode = null;
                }
            }
        }else if ( null != currentNode.leftChild && null == currentNode.rightChild )//第二种情况,只有一个字节点,且为左节点

        {
            if ( root == currentNode )
            {
                root = currentNode.leftChild;
                currentNode = null;
            } else
            {
                if ( true == isLeftChild )
                {
                    parentNode.leftChild = currentNode.leftChild;
                    currentNode = null;
                }else
                {
                    parentNode.rightChild = currentNode.leftChild;
                    currentNode = null;
                }
            }
        }else if ( null == currentNode.leftChild && null != currentNode.rightChild )//第二种情况,只有一个字节点,且为右节点

        {
            if ( root == currentNode )
            {
                root = currentNode.rightChild;
                currentNode = null;
            } else
            {
                if ( true == isLeftChild )
                {
                    parentNode.leftChild = currentNode.rightChild;
                    currentNode = null;
                }else
                {
                    parentNode.rightChild = currentNode.rightChild;
                    currentNode = null;
                }
            }
        }else//第三种情况,待删除节点有两个子节点。

        {
            /**
             * 方法一:首先找到待删除节点的后继节点successor,然后根据两种不同的关系分别处理
             *
             * 后继节点successor与当前待删除节点currentNode有两种关系:
             *         1、successor是currentNode的右子节点,即currentNode.rightChild == successor,
             *             这个时候currentNode的右子节点没有左子树,这是最简单的情况,作两步处理
             *             a、successor.leftChild = currentNode.leftChild
             *             b、让successor代替currentNode成为parentNode的子节点
             *         2、successor是currentNode的右子节点的左子树中的某个节点,
             *             该情况下,在getSuccessor函数体内部建立了currentNode的子节点与successor的关系
             *             所以在此处只需要建立currentNode的父节点与successor节点的关系
             */

            /**
             * 方法二:首先找到待删除节点的后继节点successor,将后继节点的值拷贝到待删除节点中,再删除掉后继节点。
             * 这种方法是投机取巧型的,很实用,但是当节点结果改变时,该方法的代码也需要随之改变。
             * 解决这中情况的出现,可以在节点里定义一个拷贝的方法,封装数据,这样就可以了。
             */

            
            //此处用的是方法一,最原始的方法,也是最健壮的方法,

            Node successor = getSuccessor( currentNode );//找到待删除节点的后继节点successor

            if( root == currentNode )
            {
                root = successor;
            }else if(isLeftChild)
            {
                parentNode.leftChild = successor;
            }
            else
            {
                parentNode.rightChild = successor;
            }
            
            successor.leftChild = currentNode.leftChild;
            currentNode = null;
        }
        
        
        return true;
    }
    
    /**
     * 找到delNode的后继节点
     * @param delNode
     * @return 返回delNode的后继节点
     *
     * 后继节点successor与当前待删除的delNode节点有两种关系:
     *         1、successor是delNode的右子节点,即delNode.rightChild == successor
     *             这个时候delNode的右子节点没有左子树,这是简单的情况
     *         2、successor是delNode的右子节点的左子树中的某个节点
     */

    private Node getSuccessor(Node delNode)
    {
        Node successor = delNode;//后继节点

        Node successorParent = delNode;//后继节点的父节点

        Node current = delNode.rightChild;
        
        //找到后继节点

        while ( null != current )
        {
            successorParent = successor;
            successor = current;
            current = current.leftChild;
        }
        
        //如果是第二种情况,顺便建立节点间关系,因为这样更方便

        if ( successor != delNode.rightChild )
        {                                         
            successorParent.leftChild = successor.rightChild;
            successor.rightChild = delNode.rightChild;
            successor.leftChild = delNode.leftChild;
        }
    
        return successor;
    }

    public Node getRoot()
    {
        return root;
    }

    public void setRoot( Node root )
    {
        this.root = root;
    }
}

测试程序:

 

package zieckey.datastructure.study.tree;

/**
 *
 * 测试程序
 *
 * @author zieckey
 *
 */

public class TreeApp
{
    /**
     * @param args
     */

    public static void main( String[] args )
    {
        // TODO Auto-generated method stub

        Tree t = new Tree();
        t.insert( 50, 1.5 ); // insert 3 nodes

        t.insert( 25, 1.7 );
        t.insert( 75, 1.9 );
        t.insert( 62, 1.9 );
        t.insert( 87, 1.9 );
        t.insert( 79, 1.9 );
        t.insert( 93, 1.9 );
        t.insert( 20, 1.9 );
        t.insert( 30, 1.9 );
        t.insert( 15, 1.9 );
        
        t.inOrderTraveral( t.getRoot() );
        t.delete( 50 );
        System.out.println("");
        System.out.println( t.getRoot().toString());
        t.inOrderTraveral( t.getRoot() );
        t.delete( 62 );
        System.out.println("");
        System.out.println( t.getRoot().toString());
        t.inOrderTraveral( t.getRoot() );
        
        // end main()

    }
}

阅读(4056) | 评论(1) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2009-10-29 11:01:24

加瓦编程?