问题描述:
楼梯有20阶台阶,上楼可以一步上1阶、2阶或3阶三种走法,计算共有多少种不同的走法。
算法:
最简单情况,不考虑三种走法的顺序,那么可以用穷举法计算。原理是: 1X+2Y+3Z=20。结果是44种。
如果考虑顺序,那么对于每一种(X、Y、Z)走法都要计算他们的排列组合数,然后相加。
源码程序如下:
package zieckey.datastructure.study.recursion;
public class StaircaseProblem {
/** * @param args */ public static void main( String[] args ) { long ans = calc( 20 ); System.out.println( "The answer is : " + ans ); }
public static long calc( int n ) { long ans = 0; for ( int out = 0; out <= n; out++ ) { for ( int mid = 0; mid <= n / 2 + 1; mid++ ) { for ( int in = 0; in <= n / 3 + 1; in++ ) {
if ( out + mid * 2 + in * 3 == 20 ) { long temp = permutationCombination( out, mid, in );//考虑顺序
//long temp = 1;//不考虑顺序 System.out.print( "1step:" + out ); System.out.print( " 2step: " + mid ); System.out.print( " 3step: " + in ); System.out.println( " permutationCombination: " + temp ); ans = ans + temp; } } } } return ans; }
/** * @param big * @param small * @return 从 big 个元素取 small 个,不进行排列(即不排序)。 */ public static long combination1( int big, int small ) { if ( big == 0 || small == 0 ) { return 1; }else if ( big==small ) { return 1; }
long ans = 1; int loop = small; long numerator = 1;//分子
for ( int i = 1; i <= loop; i++ ) { ans = ans * (big-i+1); numerator = numerator * i; }
ans = ans / numerator; return ans; }
/** * 三个参数,oneNo,towNo,threeNo代表三种不同物品的个数。 sum = oneNo+towNo+threeNo * 将这三种些物品排成一列,公有多少种排放法 * * @param oneNo * 物品1的个数,有可能为0 * @param towNo * 物品2的个数,有可能为0 * @param threeNo * 物品3的个数,有可能为0 * @return 将这三种些物品排成一列,共有多少种排放法 */ public static long permutationCombination( int oneNo, int towNo, int threeNo ) { long ans = 0; int totalNo = oneNo + threeNo + towNo; int[] arrayNo = sortArray( oneNo, towNo, threeNo ); ans = combination1( totalNo, arrayNo[2] ) * combination1( totalNo - arrayNo[2], arrayNo[1] ); return ans; }
/** * @param oneNo * @param towNo * @param threeNo * @return 返回由三个参数构成的数组,数组已经从大到小排序好 */ public static int[] sortArray( int oneNo, int towNo, int threeNo ) { int[] array = new int[3]; array[0] = oneNo; array[1] = towNo; array[2] = threeNo;
int temp;
for ( int out = 0; out < 3; out++ ) { for ( int in = out + 1; in < 3; in++ ) { if ( array[out] < array[in] ) { temp = array[out]; array[out] = array[in]; array[in] = temp; } } }
return array; } /** * 递归算法 * @param a * @param arrayindex * @param sum * @return */ public static int func(int a[],int arrayindex, int sum ) { if(arrayindex==0) return 1; else { int count = 0; int temp = a[arrayindex]; for (int i = temp; i <= sum; i+=temp) { if(sum-i>0) count += func(a,arrayindex-1,sum-i); } if(sum%temp==0) count+=1; count += func(a,arrayindex-1,sum); return count; } } }
|
阅读(5465) | 评论(2) | 转发(0) |