Chinaunix首页 | 论坛 | 博客
  • 博客访问: 146611
  • 博文数量: 58
  • 博客积分: 1584
  • 博客等级: 上尉
  • 技术积分: 605
  • 用 户 组: 普通用户
  • 注册时间: 2010-03-12 10:06
文章分类

全部博文(58)

文章存档

2011年(7)

2010年(51)

我的朋友

分类: C/C++

2010-06-18 20:25:07

十种排序算法分析(1)
2008-04-24 15:03
今天我正式开始按照我的目录写我的OI心得了。我要把我所有学到的OI知识传给以后千千万万的OIer。以前写过的一些东西不重复写了,但我最后将会重新整理,使之成为一个完整的教程。
     按照我的目录,讲任何东西之前我都会先介绍时间复杂度的相关知识,以后动不动就会扯到这个东西。这个已经写过了,你可以在这里看到那篇又臭又长的文章。在讲排序算法的过程中,我们将始终围绕时间复杂度的内容进行说明。
     我把这篇文章称之为“从零开始学算法”,因为排序算法是最基础的算法,介绍算法时从各种排序算法入手是最好不过的了。

     给出n个数,怎样将它们从小到大排序?下面一口气讲三种常用的算法,它们是最简单的、最显然的、最容易想到的。选择排序(Selection Sort)是说,每次从数列中找出一个最小的数放到最前面来,再从剩下的n-1个数中选择一个最小的,不断做下去。插入排序(Insertion Sort)是,每次从数列中取一个还没有取出过的数,并按照大小关系插入到已经取出的数中使得已经取出的数仍然有序。冒泡排序(Bubble Sort)分为若干趟进行,每一趟排序从前往后比较每两个相邻的元素的大小(因此一趟排序要比较n-1对位置相邻的数)并在每次发现前面的那个数比紧接它 后的数大时交换位置;进行足够多趟直到某一趟跑完后发现这一趟没有进行任何交换操作(最坏情况下要跑n-1趟,这种情况在最小的数位于给定数列的最后面时 发生)。事实上,在第一趟冒泡结束后,最后面那个数肯定是最大的了,于是第二次只需要对前面n-1个数排序,这又将把这n-1个数中最小的数放到整个数列 的倒数第二个位置。这样下去,冒泡排序第i趟结束后后面i个数都已经到位了,第i+1趟实际上只考虑前n-i个数(需要的比较次数比前面所说的n-1要 小)。这相当于用数学归纳法证明了冒泡排序的正确性:实质与选择排序相同。上面的三个算法描述可能有点模糊了,没明白的话网上找资料,代码和动画演示遍地 都是。

     这三种算法非常容易理解,因为我们生活当中经常在用。比如,班上的MM搞选美活动,有人叫我给所有MM排个名。我们通常会用选择排序,即先找出自己认为最 漂亮的,然后找第二漂亮的,然后找第三漂亮的,不断找剩下的人中最满意的。打扑克牌时我们希望抓完牌后手上的牌是有序的,三个8挨在一起,后面紧接着两个 9。这时,我们会使用插入排序,每次拿到一张牌后把它插入到手上的牌中适当的位置。什么时候我们会用冒泡排序呢?比如,体育课上从矮到高排队时,站队完毕 后总会有人出来,比较挨着的两个人的身高,指挥到:你们俩调换一下,你们俩换一下。
     这是很有启发性的。这告诉我们,什么时候用什么排序最好。当人们渴望先知道排在前面的是谁时,我们用选择排序;当我们不断拿到新的数并想保持已有的数始终有序时,我们用插入排序;当给出的数列已经比较有序,只需要小幅度的调整一下时,我们用冒泡排序。

     我们来算一下最坏情况下三种算法各需要多少次比较和赋值操作。
     选择排序在第i次选择时赋值和比较都需要n-i次(在n-i+1个数中选一个出来作为当前最小值,其余n-i个数与当前最小值比较并不断更新当前最小值),然后需要一次赋值操作。总共需要n(n-1)/2次比较与n(n-1)/2+n次赋值。
     插入排序在第i次寻找插入位置时需要最多i-1次比较(从后往前找到第一个比待插入的数小的数,最坏情况发生在这个数是所有已经取出的数中最小的一个的时 候),在已有数列中给新的数腾出位置需要i-1次赋值操作来实现,还需要两次赋值借助临时变量把新取出的数搬进搬出。也就是说,最坏情况下比较需要n(n -1)/2次,赋值需要n(n-1)/2+2n次。我这么写有点误导人,大家不要以为程序的实现用了两个数组哦,其实一个数组就够了,看看上面的演示就知 道了。我只说算法,一般不写如何实现。学算法的都是强人,知道算法了都能写出一个漂亮的代码来。
     冒泡排序第i趟排序需要比较n-i次,n-1趟排序总共n(n-1)/2次。给出的序列逆序排列是最坏的情况,这时每一次比较都要进行交换操作。一次交换操作需要3次赋值实现,因此冒泡排序最坏情况下需要赋值3n(n-1)/2次。
     按照渐进复杂度理论,忽略所有的常数,三种排序的最坏情况下复杂度都是一样的:O(n^2)。但实际应用中三种排序的效率并不相同。实践证明(政治考试时 每道大题都要用这四个字),插入排序是最快的(虽然最坏情况下与选择排序相当甚至更糟),因为每一次插入时寻找插入的位置多数情况只需要与已有数的一部分 进行比较(你可能知道这还能二分)。你或许会说冒泡排序也可以在半路上完成,还没有跑到第n-1趟就已经有序。但冒泡排序的交换操作更费时,而插入排序中 找到了插入的位置后移动操作只需要用赋值就能完成(你可能知道这还能用move)。本文后面将介绍的一种算法就利用插入排序的这些优势。

     我们证明了,三种排序方法在最坏情况下时间复杂度都是O(n^2)。但大家想过吗,这只是最坏情况下的。在很多时候,复杂度没有这么大,因为插入和冒泡在 数列已经比较有序的情况下需要的操作远远低于n^2次(最好情况下甚至是线性的)。抛开选择排序不说(因为它的复杂度是“死”的,对于选择排序没有什么 “好”的情况),我们下面探讨插入排序和冒泡排序在特定数据和平均情况下的复杂度。
     你会发现,如果把插入排序中的移动赋值操作看作是把当 前取出的元素与前面取出的且比它大的数逐一交换,那插入排序和冒泡排序对数据的变动其实都是相邻元素的交换操作。下面我们说明,若只能对数列中相邻的数进 行交换操作,如何计算使得n个数变得有序最少需要的交换次数。
     我们定义逆序对的概念。假设我们要把数列从小到大排序,一个逆序对是指的在 原数列中,左边的某个数比右边的大。也就是说,如果找到了某个i和j使得iAj,我们就说我们找到了一个逆序对。比如说,数列 3,1,4,2中有三个逆序对,而一个已经有序的数列逆序对个数为0。我们发现,交换两个相邻的数最多消除一个逆序对,且冒泡排序(或插入排序)中的一次 交换恰好能消除一个逆序对。那么显然,原数列中有多少个逆序对冒泡排序(或插入排序)就需要多少次交换操作,这个操作次数不可能再少。
     若 给出的n个数中有m个逆序对,插入排序的时间复杂度可以说是O(m+n)的,而冒泡排序不能这么说,因为冒泡排序有很多“无用”的比较(比较后没有交 换),这些无用的比较超过了O(m+n)个。从这个意义上说,插入排序仍然更为优秀,因为冒泡排序的复杂度要受到它跑的趟数的制约。一个典型的例子是这样 的数列:8, 2, 3, 4, 5, 6, 7, 1。在这样的输入数据下插入排序的优势非常明显,冒泡排序只能哭着喊上天不公。
     然而,我们并不想计算排序算法对于某个特定数据的效率。我们真正关心的是,对于所有可能出现的数据,算法的平均复杂度是多少。不用激动了,平均复杂度并不会低于平方。下面证明,两种算法的平均复杂度仍然是O(n^2)的。
     我们仅仅证明算法需要的交换次数平均为O(n^2)就足够了。前面已经说过,它们需要的交换次数与逆序对的个数相同。我们将证明,n个数的数列中逆序对个数平均O(n^2)个。
     计算的方法是十分巧妙的。如果把给出的数列反过来(从后往前倒过来写),你会发现原来的逆序对现在变成顺序的了,而原来所有的非逆序对现在都成逆序了。正 反两个数列的逆序对个数加起来正好就是数列所有数对的个数,它等于n(n-1)/2。于是,平均每个数列有n(n-1)/4个逆序对。忽略常数,逆序对平 均个数O(n^2)。
     上面的讨论启示我们,要想搞出一个复杂度低于平方级别的排序算法,我们需要想办法能把离得老远的两个数进行操作。

     人们想啊想啊想啊,怎么都想不出怎样才能搞出复杂度低于平方的算法。后来,英雄出现了,Donald Shell发明了一种新的算法,我们将证明它的复杂度最坏情况下也没有O(n^2) (似乎有人不喜欢研究正确性和复杂度的证明,我会用实例告诉大家,这些证明是非常有意思的)。他把这种算法叫做Shell增量排序算法(大家常说的希尔排 序)。
     Shell排序算法依赖一种称之为“排序增量”的数列,不同的增量将导致不同的效率。假如我们对20个数进行排序,使用的增量为 1,3,7。那么,我们首先对这20个数进行“7-排序”(7-sortedness)。所谓7-排序,就是按照位置除以7的余数分组进行排序。具体地 说,我们将把在1、8、15三个位置上的数进行排序,将第2、9、16个数进行排序,依此类推。这样,对于任意一个数字k,单看A(k), A(k+7), A(k+14), …这些数是有序的。7-排序后,我们接着又进行一趟3-排序(别忘了我们使用的排序增量为1,3,7)。最后进行1-排序(即普通的排序)后整个 Shell算法完成。看看我们的例子:

   3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2   <-- 原数列
   3 3 2 0 5 1 5 7 4 4 0 6 1 6 8 7 9 9 8 2   <-- 7-排序后
   0 0 1 1 2 2 3 3 4 4 5 6 5 6 8 7 7 9 8 9   <-- 3-排序后
   0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9   <-- 1-排序后(完成)


     在每一趟、每一组的排序中我们总是使用插入排序。仔细观察上面的例子你会发现是什么导致了Shell排序的高效。对,每一趟排序将使得数列部分有序,从而使得以后的插入排序很快找到插入位置。我们下面将紧紧围绕这一点来证明Shell排序算法的时间复杂度上界。
     只要排序增量的第一个数是1,Shell排序算法就是正确的。但是不同的增量将导致不同的时间复杂度。我们上面例子中的增量(1, 3, 7, 15, 31, …, 2^k-1)是使用最广泛的增量序列之一,可以证明使用这个增量的时间复杂度为O(n√n)。这个证明很简单,大家可以参看一些其它的资料,我们今天不证 明它。今天我们证明,使用增量1, 2, 3, 4, 6, 8, 9, 12, 16, …, 2^p*3^q,时间复杂度为O(n*(log n)^2)。
     很显然,任何一个大于1的正整数都可以表示为2x+3y,其中x和y是非负整数。于是,如果一个数列已经是2-排序的且是3 -排序的,那么对于此时数列中的每一个数A(i),它的左边比它大的只有可能是A(i-1)。A2绝对不可能比A12大,因为10可以表示为两个2和两个 3的和,则A2     我们自然会想,有没有能使复杂度降到O(nlogn)甚至更低的增量序列。很遗憾,现在没有任何迹象表明存在O(nlogn)的增量排序。但事实上,很多时候Shell排序的实际效率超过了O(nlogn)的排序算法。
阅读(873) | 评论(0) | 转发(0) |
0

上一篇:结构体

下一篇:常用排序算法3

给主人留下些什么吧!~~