内核态获取文件详细信息
#include
#include
#include
#include
#include
#include
#include
#include
#include #define MY_FILE "/root/LogFile"
char buf[128];
struct file *file = NULL;
static int __init init(void)
{
printk("Hello, I'm the module that intends to write messages to file.\n");
if(file == NULL)
file = filp_open(MY_FILE, O_RDWR | O_APPEND | O_CREAT, 0644);
if (IS_ERR(file)) {
printk("error occured while opening file %s, exiting...\n", MY_FILE);
return 0;
}
return 0;
}
static void __exit fini(void)
{
if(file != NULL)
filp_close(file, NULL);
}
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
其实上面的struct file结构体就包含了任何我们想要的关于文件相关的东西
struct file结构体定义在/linux/include/linux/fs.h(Linux 2.6.11内核)中,其原型是:
struct file {
722 /*
723 * fu_list becomes invalid after file_free is called and queued via
724 * fu_rcuhead for RCU freeing
725 */
726 union {
727 struct list_head fu_list;
728 struct rcu_head fu_rcuhead;
729 } f_u;
730 struct path f_path;
731#define f_dentry f_path.dentry
732#define f_vfsmnt f_path.mnt
733 const struct file_operations *f_op;
734 atomic_t f_count;
735 unsigned int f_flags;
736 mode_t f_mode;
737 loff_t f_pos;
738 struct fown_struct f_owner;
739 unsigned int f_uid, f_gid;
740 struct file_ra_state f_ra;
741
742 unsigned long f_version;
743#ifdef CONFIG_SECURITY
744 void *f_security;
745#endif
746 /* needed for tty driver, and maybe others */
747 void *private_data;
748
749#ifdef CONFIG_EPOLL
750 /* Used by fs/eventpoll.c to link all the hooks to this file */
751 struct list_head f_ep_links;
752 spinlock_t f_ep_lock;
753#endif /* #ifdef CONFIG_EPOLL */
754 struct address_space *f_mapping;
755};
二、作用:
文件结构体代表一个打开的文件,系统中每个打开的文件在内核空间都有一个关联的struct file。它由内核在打开文件时创建,并传递给在文件上进行操作的任何函数。在文件的所有实例都关闭后,内核释放这个数据结构。在内核创建和驱动源码中,struct file的指针通常被命名为file或filp。
三、个字段详解:
1、
union {
struct list_head fu_list;
struct rcu_head rcuhead;
}f_u;
其中的struct list_head定义在 linux/include/linux/list.h中,原型为:
21struct list_head {
22 struct list_head *next, *prev;
23};
list_head是内核中最常用的建立双向循环链表的结构,在此用于通用文件对象链表的指针。
struct rcu_head定义在linux/include/linux/rcupdate.h中,其原型为:
50struct rcu_head {
51 struct rcu_head *next;
52 void (*func)(struct rcu_head *head);
53};
在此用于更新文件。fu_list在file_free()函数被调用以后就无效了,队列通过rcu_head来释放RCU。
2、struct path f_path;
被定义在linux/include/linux/namei.h中,其原型为:
32struct path {
33 struct vfsmount *mnt;
34 struct dentry *dentry;
35};
在早些版本的内核中并没有此结构,而是直接将path的两个数据成员作为struct file的数据成员,
struct vfsmount *mnt的作用是指出该文件的已安装文件系统,
struct dentry *dentry是与文件相关的目录项对象。
3、const struct file_operations *f_op;
被定义在linux/include/linux/fs.h中,其中包含着与文件关联的操作,如:
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
等。当打开一个文件时,内核就创建一个与该文件相关联的struct file结构,其中的*f_op就指向的是具体对该文件进行操作的函数。例如用户调用系统调用read来读取该文件的内容时,那么系统调用read最终会陷入内核调用sys_read函数,而 sys_read最终会调用与该文件关联的struct file结构中的f_op->read函数对文件内容进行读取。
4、atomic_t f_count;
atomic_t被定义为:
typedef struct { volatile int counter; } atomic_t;
volatile修饰字段告诉gcc不要对该类型的数据做优化处理,对它的访问都是对内存的访问,而不是对寄存器的访问。本质是int类型,之所以这样写是让编译器对基于该类型变量的操作进行严格的类型检查。此处f_count的作用是记录对文件对象的引用计数,也即当前有多少个使用CLONE_FILES标志克隆的进程在使用该文件。典型的应用是在POSIX线程中。就像在内核中普通的引用计数模块一样,最后一个进程调用put_files_struct()来释放文件描述符。
5、unsigned int f_flags;
当打开文件时指定的标志,对应系统调用open的int flags参数。驱动程序为了支持非阻塞型操作需要检查这个标志。
六、mode_t f_mode;
对文件的读写模式,对应系统调用open的mod_t mode参数。如果驱动程序需要这个值,可以直接读取这个字段。
mod_t被定义为:
typedef unsigned int __kernel_mode_t;
typedef __kernel_mode_t mode_t;
7、loff_t f_pos;
当前的文件指针位置,即文件的读写位置。
loff_t被定义为:
typedef long long __kernel_loff_t;
typedef __kernel_loff_t loff_t;
8、struct fown_struct f_owner;
struct fown_struct在linux/include/linux/fs.h被定义,原型为:
688struct fown_struct {
689 rwlock_t lock; /* protects pid, uid, euid fields */
690 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
691 enum pid_type pid_type;/*Kind of process group SIGIO should be sent to*/
692 uid_t uid, euid; /* uid/euid of process setting the owner */
693 int signum; /* posix.1b rt signal to be delivered on IO */ 694};
该结构的作用是通过信号进行I/O时间通知的数据。
9、unsigned int f_uid, f_gid;
标识文件的所有者id,所有者所在组的id.
10、struct file_ra_state f_ra;
struct file_ra_state结构被定义在/linux/include/linux/fs.h中,原型为:
699struct file_ra_state {
700 pgoff_t start; /* where readahead started */
701 unsigned long size; /* # of readahead pages */
702 unsigned long async_size; /* do asynchronous readahead when
703 there are only # of pages ahead */
704
705 unsigned long ra_pages; /* Maximum readahead window */
706 unsigned long mmap_hit; /* Cache hit stat for mmap accesses */
707 unsigned long mmap_miss; /* Cache miss stat for mmap accesses */
708 unsigned long prev_index; /* Cache last read() position */
709 unsigned int prev_offset; /* Offset where last read() ended in a page */
710};
文件预读状态,文件预读算法使用的主要数据结构,当打开一个文件时,f_ra中出了perv_page(默认为-1)和ra_apges(对该文件允许的最大预读量)这两个字段外,其他的所有字端都置为0。
11、unsigned long f_version;
记录文件的版本号,每次使用后都自动递增。
12、
#ifdef CONFIG_SECURITY
void *f_security;
#endif
此处我的理解是如果在编译内核时配置了安全措施,那么struct file结构中就会有void *f_security数据项,用来描述安全措施或者是记录与安全有关的信息。
13、void *private_data;
系统在调用驱动程序的open方法前将这个指针置为NULL。驱动程序可以将这个字段用于任意目的,也可以忽略这个字段。驱动程序可以用这个字段指向已分配的数据,但是一定要在内核释放file结构前的release方法中清除它。
14、
#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct list_head f_ep_links;
spinlock_t f_ep_lock;
#endif /* #ifdef CONFIG_EPOLL */
被用在fs/eventpoll.c来链接所有钩到这个文件上。其中f_ep_links是文件的事件轮询等待者链表的头,f_ep_lock是保护f_ep_links链表的自旋锁。
15、struct address_space *f_mapping;
struct address_space被定义在/linux/include/linux/fs.h中,此处是指向文件地址空间的指针。
struct address_space {
struct inode *host; /* owner: inode, block_device */
struct radix_tree_root page_tree; /* radix tree of all pages */
rwlock_t tree_lock; /* and rwlock protecting it */
unsigned int i_mmap_writable;/* count VM_SHARED mappings */
struct prio_tree_root i_mmap; /* tree of private and shared mappings */
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
spinlock_t i_mmap_lock; /* protect tree, count, list */
unsigned int truncate_count; /* Cover race condition with truncate */
unsigned long nrpages; /* number of total pages */
pgoff_t writeback_index;/* writeback starts here */
const struct address_space_operations *a_ops; /* methods */
unsigned long flags; /* error bits/gfp mask */
struct backing_dev_info *backing_dev_info; /* device readahead, etc */
spinlock_t private_lock; /* for use by the address_space */
struct list_head private_list; /* ditto */
struct address_space *assoc_mapping; /* ditto */
} __attribute__((aligned(sizeof(long))));
这里有个inode结构体 哈哈就是它了 终于找到了
struct inode {
struct hlist_node i_hash;
struct list_head i_list;
struct list_head i_sb_list;
struct list_head i_dentry;
unsigned long i_ino;
atomic_t i_count;
umode_t i_mode;
unsigned int i_nlink;
uid_t i_uid;
gid_t i_gid;
dev_t i_rdev;
loff_t i_size;
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
unsigned int i_blkbits;
unsigned long i_blksize;
unsigned long i_version;
blkcnt_t i_blocks;
unsigned short i_bytes;
spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
struct mutex i_mutex;
struct rw_semaphore i_alloc_sem;
struct inode_operations *i_op;
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
struct super_block *i_sb;
struct file_lock *i_flock;
struct address_space *i_mapping;
struct address_space i_data;
#ifdef CONFIG_QUOTA
struct dquot *i_dquot[MAXQUOTAS];
#endif
/* These three should probably be a union */
struct list_head i_devices;
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;
int i_cindex;
__u32 i_generation;
#ifdef CONFIG_DNOTIFY
unsigned long i_dnotify_mask; /* Directory notify events */
struct dnotify_struct *i_dnotify; /* for directory notifications */
#endif
#ifdef CONFIG_INOTIFY
struct list_head inotify_watches; /* watches on this inode */
struct mutex inotify_mutex; /* protects the watches list */
#endif
unsigned long i_state;
unsigned long dirtied_when; /* jiffies of first dirtying */
unsigned int i_flags;
atomic_t i_writecount;
void *i_security;
union {
void *generic_ip;
} u;
#ifdef __NEED_I_SIZE_ORDERED
seqcount_t i_size_seqcount;
#endif
};
这个inode你应该不默认了....
ok你想要文件的什么直接打印就可以了