文章来源:
http://blog.csdn.net/xiazdong/article/details/7950566
多元线性回归其实方法和单变量线性回归差不多,我们这里直接给出算法:
computeCostMulti函数
-
function J = computeCostMulti(X, y, theta)
-
-
m = length(y); % number of training examples
-
J = 0;
-
predictions = X * theta;
-
J = 1/(2*m)*(predictions - y)' * (predictions - y);
-
-
end
gradientDescentMulti函数
-
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
-
-
m = length(y); % number of training examples
-
J_history = zeros(num_iters, 1);
-
feature_number = size(X,2);
-
temp = zeros(feature_number,1);
-
for iter = 1:num_iters
-
-
for i=1:feature_number
-
temp(i) = theta(i) - (alpha / m) * sum((X * theta - y).* X(:,i));
-
end
-
for j=1:feature_number
-
theta(j) = temp(j);
-
end
-
-
J_history(iter) = computeCostMulti(X, y, theta);
-
-
end
-
-
end
但是其中还是有一些区别的,比如在开始梯度下降之前需要进行feature Scaling:
-
function [X_norm, mu, sigma] = featureNormalize(X)
-
-
X_norm = X;
-
mu = zeros(1, size(X, 2));
-
sigma = zeros(1, size(X, 2));
-
mu = mean(X);
-
sigma = std(X);
-
for i=1:size(mu,2)
-
X_norm(:,i) = (X(:,i).-mu(i))./sigma(i);
-
end
-
-
end
Normal Equation算法的实现
-
function [theta] = normalEqn(X, y)
-
-
theta = zeros(size(X, 2), 1);
-
theta = pinv(X'*X)*X'*y;
-
-
end
-
阅读(1699) | 评论(0) | 转发(0) |