Chinaunix首页 | 论坛 | 博客
  • 博客访问: 4565964
  • 博文数量: 1214
  • 博客积分: 13195
  • 博客等级: 上将
  • 技术积分: 9105
  • 用 户 组: 普通用户
  • 注册时间: 2007-01-19 14:41
个人简介

C++,python,热爱算法和机器学习

文章分类

全部博文(1214)

文章存档

2021年(13)

2020年(49)

2019年(14)

2018年(27)

2017年(69)

2016年(100)

2015年(106)

2014年(240)

2013年(5)

2012年(193)

2011年(155)

2010年(93)

2009年(62)

2008年(51)

2007年(37)

分类: IT职场

2014-03-26 23:34:13

文章来源:http://blog.csdn.net/xiazdong/article/details/7950111
一、算法实现


由前面的理论,我们知道了用梯度下降解决线性回归的公式:


梯度下降解决线性回归思路:




算法实现:

ComputeCost函数:

[plain] view plaincopy
  1. function J = computeCost(X, y, theta)  
  2.       
  3.     m = length(y); % number of training examples  
  4.     J = 0;  
  5.     predictions = X * theta;  
  6.     J = 1/(2*m)*(predictions - y)'*(predictions - y);  
  7.   
  8. end  

gradientDescent函数:

[plain] view plaincopy
  1. function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)  
  2. % X is m*(n+1) matrix   
  3. % y is m*1  
  4. % theta is (n+1)*1 matrix  
  5. % alpha is a number   
  6. % num_iters is number of iterators  
  7.   
  8.       
  9.     m = length(y); % number of training examples  
  10.     J_history = zeros(num_iters, 1);  %cost function的值的变化过程  
  11.     %预先定义了迭代的次数  
  12.   
  13.     for iter = 1:num_iters  
  14.   
  15.         temp1 = theta(1) - (alpha / m) * sum((X * theta - y).* X(:,1));  
  16.         temp2 = theta(2) - (alpha / m) * sum((X * theta - y).* X(:,2));  
  17.         theta(1) = temp1;  
  18.         theta(2) = temp2;  
  19.         J_history(iter) = computeCost(X, y, theta);  
  20.   
  21.     end  
  22.   
  23. end  



二、数据可视化


我们通过算法实现能够求出函数h(x),但是我们还需要将数据可视化:
(1)画出训练集的散点图+拟合后的直线;
(2)画出J(theta)为z轴,theta0为x轴,theta1为y轴的三维曲线;
(3)画出(2)的三维曲线的等高线图;



1.画散点图+拟合的直线


描述:给定ex1data1.txt,文件中有两列数据,每一列代表一个维度,第一列代表X,第二列代表Y,用Octave画出散布图(Scalar Plot),数据的形式如下:

6.1101,17.592

5.5277,9.1302

8.5186,13.662

7.0032,11.854

5.8598,6.8233

8.3829,11.886

........


答:
(1)data = load('ex1data1.txt');             %导入该文件,并赋予data变量
(2)X = data( : , 1 );Y = data( : , 2);    %将两列分别赋予X和Y
(3)X = [ones(size(X,1),1),X];                  %在X的左边添加一列1
(4)plot(X,Y,'rx','MarkerSize', 4);            %画图,将X向量作为X轴,Y向量作为Y轴,每个点用“x”表示,‘r’表示红点,每个点的大小为4;
(5)axis([4 24 -5 25]);                             %调整x和y轴的起始坐标和最高坐标;
(6)xlabel('x');                                         %给x轴标号为‘x’;
(7)ylabel('y');                                        %给y轴标号为‘y’;

最后见下图:


经过计算,算出theta值:
[theta,J_history] = gradientDescent(X, y, theta, alpha, num_iters);
即可通过:
plot(X(:,2), X*theta);             %画出最后拟合的直线



以上呈现了线性回归的结果;

以下两种都是可视化J(theta);


2.Surface Plot


描述:数据如上一题一样,我们想要绘制出对于这些数据的cost function,我们将绘制出三维图形和contour plot;

我们如果要绘制cost function,我们必须预先写好cost function的公式:
function J = computeCost(X, y, theta)
    m = length(y); 
    J = 0;
    predictions = X * theta;
    J = 1/(2*m)*sum((predictions - y) .^ 2);
end

实现:

(1)theta0_vals = linspace(-10, 10, 100);                  %从-10到10之间取100个数组成一个向量
(2)theta1_vals = linspace(-1, 4, 100);                      %从-1到4之间取100个数组成一个向量
(3)J_vals = zeros(length(theta0_vals), length(theta1_vals));   %初始化J_vals矩阵,对于某个theta0和theta1,J_vals都有对应的cost function值;
(4)计算每个(theta0,theta1)所对应的J_vals;
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
  t = [theta0_vals(i); theta1_vals(j)];    
  J_vals(i,j) = computeCost(X, y, t);
    end
end
(5)figure;                      %创建一个图
(6)surf(theta0_vals,theta1_vals,J_vals);  %x轴为theta0_vals,y轴为theta1_vals,z轴为J_vals;
(7)xlabel('\theta_0');   %添加x轴标志
(8)ylabel('\theta_1');   %添加y轴标志


 
此图而且可以转动;



2.Contour Plot

实现:

(1)theta0_vals = linspace(-10, 10, 100);                  %从-10到10之间取100个数组成一个向量
(2)theta1_vals = linspace(-1, 4, 100);                      %从-1到4之间取100个数组成一个向量
(3)J_vals = zeros(length(theta0_vals), length(theta1_vals));   %初始化J_vals矩阵,对于某个theta0和theta1,J_vals都有对应的cost function值;
(4)计算每个(theta0,theta1)所对应的J_vals;
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
  t = [theta0_vals(i); theta1_vals(j)];    
  J_vals(i,j) = computeCost(X, y, t);
    end
end
(5)figure;                      %创建一个图
(6)contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20));  %画等高线图
(7)xlabel('\theta_0'); ylabel('\theta_1');



如果我们想要在等高线图上画出线性回归的theta0与theta1的结果,则可以:
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);


 

 


4.画图查看Learning Rate是否合理

 
我们在gradientDescent函数中返回的值里有J_history向量,此向量记录了每次迭代后cost function的值,因此我们只需要将x轴为迭代的次数,y轴为cost function的值,即可画图:

(1)[theta,J_history] = gradientDescent(X, y, theta, alpha, num_iters);
(2)figure;        
(3)plot(1:length(J_history), J_history, '-b', 'LineWidth', 2);   
(4)xlabel('Number of iterations');
(5)ylabel('Cost J');


 
当然,我们也可以将不同的alpha值都画在一张图上,可以比较取各个alpha时,cost function的变化趋势;
 
(1)alpha=0.01;
(2)[theta,J1] = gradientDescent(X, y, zeros(3,1), alpha, num_iters);
(3)alpha=0.03;
(4)[theta,J2] = gradientDescent(X, y, zeros(3,1), alpha, num_iters);
(5)alpha=0.1;
(6)[theta,J3] = gradientDescent(X, y, zeros(3,1), alpha, num_iters);
(7)plot(1:numel(J1), J1, '-b', 'LineWidth', 2);
(8)plot(1:numel(J2), J2, '-r', 'LineWidth', 2);
(9)plot(1:numel(J3), J3, '-k', 'LineWidth', 2);





我们可以根据等高线,大范围上确定有几个local minimum,结合surface图初步估算theta初值取哪里比较合适。
根据不同alpha取值时,cost function的收敛速度,并且不会出现overshoot,确定alpha取哪个值比较好。
阅读(1290) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~