};
由于这两个类中有虚函数存在,所以编译器就会为他们两个分别插入一段你不知道的数据,并为他们分别创建一个表。那段数据叫做vptr指针,指向那个表。那个表叫做vtbl,每个类都有自己的vtbl,vtbl的作用就是保存自己类中虚函数的地址,我们可以把vtbl形象地看成一个数组,这个数组的每个元素存放的就是虚函数的地址,请看图
通过上图,可以看到这两个vtbl分别为class A和class B服务。现在有了这个模型之后,我们来分析下面的代码
A *p=new A;
p->fun();
毫无疑问,调用了A::fun(),但是A::fun()是如何被调用的呢?它像普通函数那样直接跳转到函数的代码处吗?No,其实是这样的,首先是取出vptr的值,这个值就是vtbl的地址,再根据这个值来到vtbl这里,由于调用的函数A::fun()是第一个虚函数,所以取出vtbl第一个slot里的值,这个值就是A::fun()的地址了,最后调用这个函数。现在我们可以看出来了,只要vptr不同,指向的vtbl就不同,而不同的vtbl里装着对应类的虚函数地址,所以这样虚函数就可以完成它的任务。
而对于class A和class B来说,他们的vptr指针存放在何处呢?其实这个指针就放在他们各自的实例对象里。由于class A和class B都没有数据成员,所以他们的实例对象里就只有一个vptr指针。通过上面的分析,现在我们来实作一段代码,来描述这个带有虚函数的类的简单模型。
#include
using namespace std;
//将上面“虚函数示例代码”添加在这里
int main(){
void (*fun)(A*);
A *p=new B;
long lVptrAddr;
memcpy(&lVptrAddr,p,4);
memcpy(&fun,reinterpret_cast(lVptrAddr),4);
fun(p);
delete p;
system("pause");
}
用VC或Dev-C++编译运行一下,看看结果是不是输出3,如果不是,那么太阳明天肯定是从西边出来。现在一步一步开始分析
void (*fun)(A*); 这段定义了一个函数指针名字叫做fun,而且有一个A*类型的参数,这个函数指针待会儿用来保存从vtbl里取出的函数地址
A* p=new B; 这个我不太了解,算了,不解释这个了
long lVptrAddr; 这个long类型的变量待会儿用来保存vptr的值
memcpy(&lVptrAddr,p,4); 前面说了,他们的实例对象里只有vptr指针,所以我们就放心大胆地把p所指的4bytes内存里的东西复制到lVptrAddr中,所以复制出来的4bytes内容就是vptr的值,即vtbl的地址
现在有了vtbl的地址了,那么我们现在就取出vtbl第一个slot里的内容
memcpy(&fun,reinterpret_cast(lVptrAddr),4); 取出vtbl第一个slot里的内容,并存放在函数指针fun里。需要注意的是lVptrAddr里面是vtbl的地址,但lVptrAddr不是指针,所以我们要把它先转变成指针类型
fun(p); 这里就调用了刚才取出的函数地址里的函数,也就是调用了B::fun()这个函数,也许你发现了为什么会有参数p,其实类成员函数调用时,会有个this指针,这个p就是那个this指针,只是在一般的调用中编译器自动帮你处理了而已,而在这里则需要自己处理。
delete p;和system("pause"); 这个我不太了解,算了,不解释这个了
如果调用B::fun2()怎么办?那就取出vtbl的第二个slot里的值就行了
memcpy(&fun,reinterpret_cast(lVptrAddr+4),4); 为什么是加4呢?因为一个指针的长度是4bytes,所以加4。或者memcpy(&fun,reinterpret_cast(lVptrAddr)+1,4); 这更符合数组的用法,因为lVptrAddr被转成了long*型别,所以+1就是往后移sizeof(long)的长度
三, 以一段代码开始
#include
using namespace std;
class A{ //虚函数示例代码2
public:
virtual void fun(){ cout<<"A::fun"<
virtual void fun2(){cout<<"A::fun2"<
};
class B:public A{
public:
void fun(){ cout<<"B::fun"<
void fun2(){ cout<<"B::fun2"<
}; //end//虚函数示例代码2
int main(){
void (A::*fun)(); //定义一个函数指针
A *p=new B;
fun=&A::fun;
(p->*fun)();
fun = &A::fun2;
(p->*fun)();
delete p;
system("pause");
}
你能估算出输出结果吗?如果你估算出的结果是A::fun和A::fun2,呵呵,恭喜恭喜,你中圈套了。其实真正的结果是B::fun和B::fun2,如果你想不通就接着往下看。给个提示,&A::fun和&A::fun2是真正获得了虚函数的地址吗?
首先我们回到第二部分,通过段实作代码,得到一个“通用”的获得虚函数地址的方法
#include
using namespace std;
//将上面“虚函数示例代码2”添加在这里
void CallVirtualFun(void* pThis,int index=0){
void (*funptr)(void*);
long lVptrAddr;
memcpy(&lVptrAddr,pThis,4);
memcpy(&funptr,reinterpret_cast(lVptrAddr)+index,4);
funptr(pThis); //调用
}
int main(){
A* p=new B;
CallVirtualFun(p); //调用虚函数p->fun()
CallVirtualFun(p,1);//调用虚函数p->fun2()
system("pause");
}
现在我们拥有一个“通用”的CallVirtualFun方法。
这个通用方法和第三部分开始处的代码有何联系呢?联系很大。由于A::fun()和A::fun2()是虚函数,所以&A::fun和&A::fun2获得的不是函数的地址,而是一段间接获得虚函数地址的一段代码的地址,我们形象地把这段代码看作那段CallVirtualFun。编译器在编译时,会提供类似于CallVirtualFun这样的代码,当你调用虚函数时,其实就是先调用的那段类似CallVirtualFun的代码,通过这段代码,获得虚函数地址后,最后调用虚函数,这样就真正保证了多态性。同时大家都说虚函数的效率低,其原因就是,在调用虚函数之前,还调用了获得虚函数地址的代码。
最后的说明:本文的代码可以用VC6和Dev-C++4.9.8.0通过编译,且运行无问题。其他的编译器小弟不敢保证。其中,里面的类比方法只能看成模型,因为不同的编译器的低层实现是不同的。例如this指针,Dev-C++的gcc就是通过压栈,当作参数传递,而VC的编译器则通过取出地址保存在ecx中。所以这些类比方法不能当作具体实现。
阅读(1320) | 评论(0) | 转发(0) |