柔中带刚,刚中带柔,淫荡中富含柔和,刚猛中荡漾风骚,无坚不摧,无孔不入!
全部博文(1669)
分类: 系统运维
2016-09-30 00:28:05
双机热备的概念简单说一下,就是要保持两个数据库的状态自动同步。对任何一个数据库的操作都自动应用到另外一个数据库,始终保持两个数据库数据一致。 这样做的好处多。 1. 可以做灾备,其中一个坏了可以切换到另一个。 2. 可以做负载均衡,可以将请求分摊到其中任何一台上,提高网站吞吐量。 对于异地热备,尤其适合灾备。废话不多说了。我们直接进入主题。 我们会主要介绍两部分内容:
一, mysql 备份工作原理
二, 备份实战
我们开始。
我使用的是mysql 5.5.34,
一, mysql 备份工作原理
简单的说就是把 一个服务器上执行过的sql语句在别的服务器上也重复执行一遍, 这样只要两个数据库的初态是一样的,那么它们就能一直同步。
当然这种复制和重复都是mysql自动实现的,我们只需要配置即可。
我们进一步详细介绍原理的细节, 这有一张图:
上图中有两个服务器, 演示了从一个主服务器(master) 把数据同步到从服务器(slave)的过程。
这是一个主-从复制的例子。 主-主互相复制只是把上面的例子反过来再做一遍。 所以我们以这个例子介绍原理。
对于一个mysql服务器, 一般有两个线程来负责复制和被复制。当开启复制之后。
1. 作为主服务器Master, 会把自己的每一次改动都记录到 二进制日志 Binarylog 中。 (从服务器会负责来读取这个log, 然后在自己那里再执行一遍。)
2. 作为从服务器Slave, 会用master上的账号登陆到 master上, 读取master的Binarylog, 写入到自己的中继日志 Relaylog, 然后自己的sql线程会负责读取这个中继日志,并执行一遍。 到这里主服务器上的更改就同步到从服务器上了。
在mysql上可以查看当前服务器的主,从状态。 其实就是当前服务器的 Binary(作为主服务器角色)状态和位置。 以及其RelayLog(作为从服务器)的复制进度。
例如我们在主服务器上查看主状态:
mysql> show master status\G
*************************** 1. row ***************************
File: mysql-bin.000014
Position: 107
Binlog_Do_DB:
Binlog_Ignore_DB: mysql,information_schema,performance_schema,amh
1 row in set (0.00 sec)
稍微解释一下这几行的意思:
1. 第一行表明 当前正在记录的 binarylog文件名是: mysql-bin.000014.
我们可以在mysql数据目录下,找到这个文件:
2. 第二行, 107. 表示当前的文件偏移量, 就是写入在mysql-bin.000014 文件的记录位置。
这两点就构成了 主服务器的状态。 配置从服务器的时候,需要用到这两个值。 告诉从服务器从哪读取主服务器的数据。 (从服务器会登录之后,找到这个日志文件,并从这个偏移量之后开始复制。)
3. 第三行,和第四行,表示需要记录的数据库和需要忽略的数据库。 只有需要记录的数据库,其变化才会被写入到mysql-bin.000014日志文件中。 后面会再次介绍这两个参数。
我们还可以在从服务器上,查看从服务器的复制状态。
1: mysql> show slave status\G
2: *************************** 1. row ***************************
3: Slave_IO_State: Waiting for master to send event
4: Master_Host: 198.**.***.***
5: Master_User: r*******
6: Master_Port: 3306
7: Connect_Retry: 60
8: Master_Log_File: mysql-bin.000014
9: Read_Master_Log_Pos: 107
10: Relay_Log_File: mysqld-relay-bin.000013
11: Relay_Log_Pos: 253
12: Relay_Master_Log_File: mysql-bin.000014
13: Slave_IO_Running: Yes
14: Slave_SQL_Running: Yes
15: Replicate_Do_DB:
16: Replicate_Ignore_DB: mysql,information_schema,amh,performance_schema
17: Replicate_Do_Table:
18: Replicate_Ignore_Table:
19: Replicate_Wild_Do_Table:
20: Replicate_Wild_Ignore_Table:
21: Last_Errno: 0
22: Last_Error:
23: Skip_Counter: 0
24: Exec_Master_Log_Pos: 107
25: Relay_Log_Space: 556
26: Until_Condition: None
27: Until_Log_File:
28: Until_Log_Pos: 0
29: Master_SSL_Allowed: No
我们还是来重点解释途中的红圈的部分:
1. Master_host 指的是 主服务器的地址。
2. Master_user 指的是主服务器上用来复制的用户。 从服务器会用此账号来登录主服务。进行复制。
3. Master_log_file 就是前面提到的, 主服务器上的日志文件名.
4. Read_Master_log_pos 就是前面提到的主服务器的日志记录位置, 从服务器根据这两个条件来选择复制的文件和位置。
5. Slave_IO_Running: 指的就是从服务器上负责读取主服务器的线程工作状态。 从服务器用这个专门的线程链接到主服务器上,并把日志拷贝回来。
6. Slave_SQL_Running: 指的就是专门执行sql的线程。 它负责把复制回来的Relaylog执行到自己的数据库中。 这两个参数必须都为Yes 才表明复制在正常工作。
其他的参数之后再介绍。
二, mysql 双机热备实战
了解了上面的原理之后, 我们来实战。 这里有两个重点, 要想同步数据库状态, 需要相同的初态,然后配置同步才有意义。 当然你可以不要初态,这是你的自由。 我们这里从头开始配置一遍。
我们先以A服务器为起点, 配置它的数据库同步到B。 这就是主-从复制了。 之后再反过来做一次,就可以互相备份了。
1, 第一步,
在A上面创建专门用于备份的 用户:
grant replication slave on *.* to @'192.***.***.***' identified by 'hj34$%&mnkb';
上面把ip地址换成B机器的ip地址。 只允许B登录。安全。
用户名为: repl_user
密码为: hj34$********nkb
这个等会在B上面要用。
2. 开启主服务器的 binarylog。
很多服务器是默认开启的,我们这里检查一下:
打开 /etc/my.cnf
我来解释一下红框中的配置:
前面三行, 你可能已经有了。
binlog-do-db 用来表示,只把哪些数据库的改动记录到binary日志中。 可以写上关注hello数据库。 但是我把它注释掉了。 只是展示一下。 可以写多行,表示关注多个数据库。
binlog-ignore-db 表示,需要忽略哪些数据库。我这里忽略了其他的4个数据库。
后面两个用于在 双主(多主循环)互相备份。 因为每台数据库服务器都可能在同一个表中插入数据,如果表有一个自动增长的主键,那么就会在多服务器上出现主键冲突。 解决这个问题的办法就是让每个数据库的自增主键不连续。 上图说是, 我假设需要将来可能需要10台服务器做备份, 所以auto-increment-increment 设为10. 而 auto-increment-offset=1 表示这台服务器的序号。 从1开始, 不超过auto-increment-increment。
这样做之后, 我在这台服务器上插入的第一个id就是 1, 第二行的id就是 11了, 而不是2.
(同理,在第二台服务器上插入的第一个id就是2, 第二行就是12, 这个后面再介绍) 这样就不会出现主键冲突了。 后面我们会演示这个id的效果。
3. 获取主服务器状态, 和同步初态。
假设我现在有这些数据库在A上面。
如果你是全新安装的, 那么不需要同步初态,直接跳过这一步,到后面直接查看主服务器状态。
这里我们假设有一个 hello 数据库作为初态。
先锁定 hello数据库:
FLUSH TABLES WITH READ LOCK;
然后导出数据:
我这里只需要导出hello数据库, 如果你有多个数据库作为初态的话, 需要导出所有这些数据库:
然后查看A服务器的binary日志位置:
记住这个文件名和 位置, 等会在从服务器上会用到。
主服务器已经做完了, 可以解除锁定了:
4. 设置从服务器 B 需要复制的数据库
打开从服务器 B 的 /etc/my.cnf 文件:
解释一下上面的内容。
server-id 必须保证每个服务器不一样。 这可能和循环同步有关。 防止进入死循环。
replicate-do-db 可以指定需要复制的数据库, 我这里注掉了。 演示一下。
replicate-ignore-db 复制时需要排除的数据库, 我使用了,这个。 除开系统的几个数据库之外,所有的数据库都复制。
relay_log 中继日志的名字。 前面说到了, 复制线程需要先把远程的变化拷贝到这个中继日志中, 在执行。
log-slave-updates 意思是,中继日志执行之后,这些变化是否需要计入自己的binarylog。 当你的B服务器需要作为另外一个服务器的主服务器的时候需要打开。 就是双主互相备份,或者多主循环备份。 我们这里需要, 所以打开。
保存, 重启mysql。
5. 导入初态, 开始同步。
把刚才从A服务器上导出的 hello.sql 导入到 B的hello数据库中, 如果B现在没有hello数据库,请先创建一个, 然后再导入:
创建数据库:
mysql> create database hello default charset utf8;
把hello.sql 上传到B上, 然后导入:
如果你刚才导出了多个数据库, 需要把他们都一一上传导入。
开启同步, 在B服务器上执行:
CHANGE MASTER TO
MASTER_HOST='192.***.***.***',
MASTER_USER='repl_user',
MASTER_PASSWORD='hj3****',
MASTER_LOG_FILE='mysql-bin.000004',
MASTER_LOG_POS=7145;
上面几个参数我就不解释了。 前面说过了。
重启mysql, 然后查看slave线程开启了没:
注意图中的红框, 两个都是Yes, 说明开启成功。
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
如果其中一个是No, 那就说明不成功。需要查看mysql的错误日志。 我在第一次做的时候就遇到这个问题。有时候密码填错了, 有时候防火墙的3306没有打开。ip地址不对,等等。 都会导致失败。
我们看错误日志: mysql的错误日志一般在:
文件名应该是你的机器名, 我这里叫做host1.err 你换成你自己的。
到这里主-从复制已经打开了。 我们先来实验一下。
我们在A的数据库里面去 添加数据:
我在A的 hello数据库的test表中 连续插入了3条数据, 注意看他们的自增长id, 分别是1,11,21. 知道这是为什么吗。 前面已经说过了,不懂再回去看。
我们去看一下B数据库有没有这三条数据:
打开B的数据库:
发现已经在这了。 这里效果不直观。
此时不要在B中修改数据。 我们接着配置从B到A的复制。 如果你只需要主从复制的话, 到这里就结束了。后面可以不看了。 所有A中的修改都能自动同步到B, 但是对B的修改却不能同步到A。 因为是单向的。 如果需要双向同步的话,需要再做一次从B到A的复制。
基本跟上面一样:我们简单一点介绍:
2. 打开 /etc/my.cnf , 开启B的binarylog:
注意红框中所新添加的部分。
3. 我们不需要导出B的初态了,因为它刚刚才从A导过来。 直接记住它的master日志状态:
记住这两个数值,等会在A上面要用。
B服务器就设置完了。
4. 登录到A 服务器。 开启中继:
注意框中心添加的部分, 不解释了。
5. 启动同步:
上面的ip地址是B的ip地址, 因为A把B当做master了。 不解释了。
然后重启mysql服务。
然后查看,slave状态是否正常:
图中出现了两个No。
Slave_IO_Running: No
Slave_SQL_Running: No
说明slave没有成功, 即,从B到A的同步没有成功。 我们去查看mysql错误日志,前面说过位置:
找到 机器名.err 文件,打开看看:
看图中的error信息。 说找不到中继日志文件。
这是因为我们在配置A的中继文件时改了中继文件名,但是mysql没有同步。解决办法很简单。
先停掉mysql服务。 找到这三个文件,把他们删掉。 一定要先停掉mysql服务。不然还是不成功。你需要重启一下机器了。 或者手动kill mysqld。
好了, 启动mysql之后。 我们在来检查一下slave状态:
注意图中两个大大的Yes。
Mysql内建的复制功能是构建大型,高性能应用程序的基础。将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重新执行一遍来实现的。复制过程中一个服务器充当主服务器,而一个或多个其它服务器充当从服务器。主服务器将更新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环。这些日志可以记录发送到从服务器的更新。当一个从服务器连接主服务器时,它通知主服务器从服务器在日志中读取的最后一次成功更新的位置。从服务器接收从那时起发生的任何更新,然后封锁并等待主服务器通知新的更新。
请注意当你进行复制时,所有对复制中的表的更新必须在主服务器上进行。否则,你必须要小心,以避免用户对主服务器上的表进行的更新与对从服务器上的表所进行的更新之间的冲突。
(1):基于语句的复制: 在主服务器上执行的SQL语句,在从服务器上执行同样的语句。MySQL默认采用基于语句的复制,效率比较高。
一旦发现没法精确复制时, 会自动选着基于行的复制。
(2):基于行的复制:把改变的内容复制过去,而不是把命令在从服务器上执行一遍. 从mysql5.0开始支持
(3):混合类型的复制: 默认采用基于语句的复制,一旦发现基于语句的无法精确的复制时,就会采用基于行的复制。
MySQL复制技术有以下一些特点:
(1) 数据分布 (Data distribution )
(2) 负载平衡(load balancing)
(3) 备份(Backups)
(4) 高可用性和容错行 High availability and failover
整体上来说,复制有3个步骤:
(1) master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events);
(2) slave将master的binary log events拷贝到它的中继日志(relay log);
(3) slave重做中继日志中的事件,将改变反映它自己的数据。
下图描述了复制的过程:
该过程的第一部分就是master记录二进制日志。在每个事务更新数据完成之前,master在二日志记录这些改变。MySQL将事务串行的写入二进制日志,即使事务中的语句都是交叉执行的。在事件写入二进制日志完成后,master通知存储引擎提交事务。
下一步就是slave将master的binary log拷贝到它自己的中继日志。首先,slave开始一个工作线程——I/O线程。I/O线程在master上打开一个普通的连接,然后开始binlog dump process。Binlog dump process从master的二进制日志中读取事件,如果已经跟上master,它会睡眠并等待master产生新的事件。I/O线程将这些事件写入中继日志。
SQL slave thread(SQL从线程)处理该过程的最后一步。SQL线程从中继日志读取事件,并重放其中的事件而更新slave的数据,使其与master中的数据一致。只要该线程与I/O线程保持一致,中继日志通常会位于OS的缓存中,所以中继日志的开销很小。
此外,在master中也有一个工作线程:和其它MySQL的连接一样,slave在master中打开一个连接也会使得master开始一个线程。复制过程有一个很重要的限制——复制在slave上是串行化的,也就是说master上的并行更新操作不能在slave上并行操作。
有两台MySQL数据库服务器Master和slave,Master为主服务器,slave为从服务器,初始状态时,Master和slave中的数据信息相同,当Master中的数据发生变化时,slave也跟着发生相应的变化,使得master和slave的数据信息同步,达到备份的目的。
要点:
负责在主、从服务器传输各种修改动作的媒介是主服务器的二进制变更日志,这个日志记载着需要传输给从服务器的各种修改动作。因此,主服务器必须激活二进制日志功能。从服务器必须具备足以让它连接主服务器并请求主服务器把二进制变更日志传输给它的权限。
环境:
Master和slave的MySQL数据库版本同为5.0.18
操作系统:unbuntu 11.10
IP地址:10.100.0.100
1、在Master的数据库中建立一个备份帐户:每个slave使用标准的MySQL用户名和密码连接master。进行复制操作的用户会授予REPLICATION SLAVE权限。用户名的密码都会存储在文本文件master.info中
命令如下:
mysql > GRANT REPLICATION SLAVE,RELOAD,SUPER ON *.*
TO backup@’10.100.0.200’
IDENTIFIED BY ‘1234’;
建立一个帐户backup,并且只能允许从10.100.0.200这个地址上来登陆,密码是1234。
(如果因为mysql版本新旧密码算法不同,可以设置:set password for 'backup'@'10.100.0.200'=old_password('1234'))
(假如是你完全新安装mysql主从服务器,这个一步就不需要。因为新安装的master和slave有相同的数据)
关停Master服务器,将Master中的数据拷贝到B服务器中,使得Master和slave中的数据同步,并且确保在全部设置操作结束前,禁止在Master和slave服务器中进行写操作,使得两数据库中的数据一定要相同!
接下来对master进行配置,包括打开二进制日志,指定唯一的servr ID。例如,在配置文件加入如下值:
server-id=1
log-bin=mysql-bin
server-id:为主服务器A的ID值
log-bin:二进制变更日值
重启master,运行SHOW MASTER STATUS,输出如下:
mysql> CHANGE MASTER TO MASTER_HOST='server1',
-> MASTER_USER='repl',
-> MASTER_PASSWORD='p4ssword',
-> MASTER_LOG_FILE='mysql-bin.000001',
-> MASTER_LOG_POS=0;
MASTER_LOG_POS的值为0,因为它是日志的开始位置。
你可以用SHOW SLAVE STATUS语句查看slave的设置是否正确:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State:
Master_Host: server1
Master_User: repl
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: mysql-bin.000001
Read_Master_Log_Pos: 4
Relay_Log_File: mysql-relay-bin.000001
Relay_Log_Pos: 4
Relay_Master_Log_File: mysql-bin.000001
Slave_IO_Running: No
Slave_SQL_Running: No
...omitted...
Seconds_Behind_Master: NULL
Slave_IO_State, Slave_IO_Running, 和Slave_SQL_Running是No
表明slave还没有开始复制过程。日志的位置为4而不是0,这是因为0只是日志文件的开始位置,并不是日志位置。实际上,MySQL知道的第一个事件的位置是4。
为了开始复制,你可以运行:
mysql> START SLAVE;
运行SHOW SLAVE STATUS查看输出结果:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: server1
Master_User: repl
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: mysql-bin.000001
Read_Master_Log_Pos: 164
Relay_Log_File: mysql-relay-bin.000001
Relay_Log_Pos: 164
Relay_Master_Log_File: mysql-bin.000001
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...omitted...
Seconds_Behind_Master: 0
slave的I/O和SQL线程都已经开始运行,而且Seconds_Behind_Master不再是NULL。日志的位置增加了,意味着一些事件被获取并执行了。如果你在master上进行修改,你可以在slave上看到各种日志文件的位置的变化,同样,你也可以看到数据库中数据的变化。
你可查看master和slave上线程的状态。在master上,你可以看到slave的I/O线程创建的连接:
mysql> show processlist \G *************************** 1. row *************************** Id: 1 User: root Host: localhost:2096 db: test Command: Query Time: 0 State: NULL Info: show processlist *************************** 2. row *************************** Id: 2 User: repl Host: localhost:2144 db: NULL Command: Binlog Dump Time: 1838 State: Has sent all binlog to slave; waiting for binlog to be updated Info: NULL 2 rows in set (0.00 sec) |
行2为处理slave的I/O线程的连接。
在slave服务器上运行该语句:
mysql> show processlist \G *************************** 1. row *************************** Id: 1 User: system user Host: db: NULL Command: Connect Time: 2291 State: Waiting for master to send event Info: NULL *************************** 2. row *************************** Id: 2 User: system user Host: db: NULL Command: Connect Time: 1852 State: Has read all relay log; waiting for the slave I/O thread to update it Info: NULL *************************** 3. row *************************** Id: 5 User: root Host: localhost:2152 db: test Command: Query Time: 0 State: NULL Info: show processlist 3 rows in set (0.00 sec) |
行1为I/O线程状态,行2为SQL线程状态。
假如master已经运行很久了,想对新安装的slave进行数据同步,甚至它没有master的数据。
此时,有几种方法可以使slave从另一个服务开始,例如,从master拷贝数据,从另一个slave克隆,从最近的备份开始一个slave。Slave与master同步时,需要三样东西:
(1)master的某个时刻的数据快照;
(2)master当前的日志文件、以及生成快照时的字节偏移。这两个值可以叫做日志文件坐标(log file coordinate),因为它们确定了一个二进制日志的位置,你可以用SHOW MASTER STATUS命令找到日志文件的坐标;
(3)master的二进制日志文件。
可以通过以下几中方法来克隆一个slave:
(1) 冷拷贝(cold copy)
停止master,将master的文件拷贝到slave;然后重启master。缺点很明显。
(2) 热拷贝(warm copy)
如果你仅使用MyISAM表,你可以使用mysqlhotcopy拷贝,即使服务器正在运行。
(3) 使用mysqldump
使用mysqldump来得到一个数据快照可分为以下几步:
<1>锁表:如果你还没有锁表,你应该对表加锁,防止其它连接修改数据库,否则,你得到的数据可以是不一致的。如下:
mysql> FLUSH TABLES WITH READ LOCK;
<2>在另一个连接用mysqldump创建一个你想进行复制的数据库的转储:
shell> mysqldump --all-databases --lock-all-tables >dbdump.db
<3>对表释放锁。
mysql> UNLOCK TABLES;
I/O线程更新master.info文件,内容如下(我的机器上):
.\mysql-02-relay-bin.000019 254 mysql-01-bin.000010 286 0 52813 |
MySQL不支持多主服务器复制(Multimaster Replication)——即一个slave可以有多个master。但是,通过一些简单的组合,我们却可以建立灵活而强大的复制体系结构。
在实际应用场景中,MySQL复制90%以上都是一个Master复制到一个或者多个Slave的架构模式,主要用于读压力比较大的应用的数据库端廉价扩展解决方案。因为只要Master和Slave的压力不是太大(尤其是Slave端压力)的话,异步复制的延时一般都很少很少。尤其是自从Slave端的复制方式改成两个线程处理之后,更是减小了Slave端的延时问题。而带来的效益是,对于数据实时性要求不是特别Critical的应用,只需要通过廉价的pcserver来扩展Slave的数量,将读压力分散到多台Slave的机器上面,即可通过分散单台数据库服务器的读压力来解决数据库端的读性能瓶颈,毕竟在大多数数据库应用系统中的读压力还是要比写压力大很多。这在很大程度上解决了目前很多中小型网站的数据库压力瓶颈问题,甚至有些大型网站也在使用类似方案解决数据库瓶颈。
大家应该都比较清楚,从一个Master节点可以复制出多个Slave节点,可能有人会想,那一个Slave节点是否可以从多个Master节点上面进行复制呢?至少在目前来看,MySQL是做不到的,以后是否会支持就不清楚了。
MySQL不支持一个Slave节点从多个Master节点来进行复制的架构,主要是为了避免冲突的问题,防止多个数据源之间的数据出现冲突,而造成最后数据的不一致性。不过听说已经有人开发了相关的patch,让MySQL支持一个Slave节点从多个Master结点作为数据源来进行复制,这也正是MySQL开源的性质所带来的好处。
可能有些读者朋友会有一个担心,这样搭建复制环境之后,难道不会造成两台MySQL之间的循环复制么?实际上MySQL自己早就想到了这一点,所以在MySQL的BinaryLog中记录了当前MySQL的server-id,而且这个参数也是我们搭建MySQLReplication的时候必须明确指定,而且Master和Slave的server-id参数值比需要不一致才能使MySQLReplication搭建成功。一旦有了server-id的值之后,MySQL就很容易判断某个变更是从哪一个MySQLServer最初产生的,所以就很容易避免出现循环复制的情况。而且,如果我们不打开记录Slave的BinaryLog的选项(--log-slave-update)的时候,MySQL根本就不会记录复制过程中的变更到BinaryLog中,就更不用担心可能会出现循环复制的情形了。
主动的Master-Master复制有一些特殊的用处。例如,地理上分布的两个部分都需要自己的可写的数据副本。这种结构最大的问题就是更新冲突。假设一个表只有一行(一列)的数据,其值为1,如果两个服务器分别同时执行如下语句:
在第一个服务器上执行:
mysql> UPDATE tbl SET col=col + 1;
在第二个服务器上执行:
mysql> UPDATE tbl SET col=col * 2;
那么结果是多少呢?一台服务器是4,另一个服务器是3,但是,这并不会产生错误。
实际上,MySQL并不支持其它一些DBMS支持的多主服务器复制(Multimaster Replication),这是MySQL的复制功能很大的一个限制(多主服务器的难点在于解决更新冲突),但是,如果你实在有这种需求,你可以采用MySQL Cluster,以及将Cluster和Replication结合起来,可以建立强大的高性能的数据库平台。但是,可以通过其它一些方式来模拟这种多主服务器的复制。
在有些应用场景中,可能读写压力差别比较大,读压力特别的大,一个Master可能需要上10台甚至更多的Slave才能够支撑注读的压力。这时候,Master就会比较吃力了,因为仅仅连上来的SlaveIO线程就比较多了,这样写的压力稍微大一点的时候,Master端因为复制就会消耗较多的资源,很容易造成复制的延时。
遇到这种情况如何解决呢?这时候我们就可以利用MySQL可以在Slave端记录复制所产生变更的BinaryLog信息的功能,也就是打开—log-slave-update选项。然后,通过二级(或者是更多级别)复制来减少Master端因为复制所带来的压力。也就是说,我们首先通过少数几台MySQL从Master来进行复制,这几台机器我们姑且称之为第一级Slave集群,然后其他的Slave再从第一级Slave集群来进行复制。从第一级Slave进行复制的Slave,我称之为第二级Slave集群。如果有需要,我们可以继续往下增加更多层次的复制。这样,我们很容易就控制了每一台MySQL上面所附属Slave的数量。这种架构我称之为Master-Slaves-Slaves架构
这种多层级联复制的架构,很容易就解决了Master端因为附属Slave太多而成为瓶颈的风险。下图展示了多层级联复制的Replication架构。
当然,如果条件允许,我更倾向于建议大家通过拆分成多个Replication集群来解决
上述瓶颈问题。毕竟Slave并没有减少写的量,所有Slave实际上仍然还是应用了所有的数据变更操作,没有减少任何写IO。相反,Slave越多,整个集群的写IO总量也就会越多,我们没有非常明显的感觉,仅仅只是因为分散到了多台机器上面,所以不是很容易表现出来。
此外,增加复制的级联层次,同一个变更传到最底层的Slave所需要经过的MySQL也会更多,同样可能造成延时较长的风险。
而如果我们通过分拆集群的方式来解决的话,可能就会要好很多了,当然,分拆集群也需要更复杂的技术和更复杂的应用系统架构。
级联复制在一定程度上面确实解决了Master因为所附属的Slave过多而成为瓶颈的问题,但是他并不能解决人工维护和出现异常需要切换后可能存在重新搭建Replication的问题。这样就很自然的引申出了DualMaster与级联复制结合的Replication架构,我称之为Master-Master-Slaves架构
和Master-Slaves-Slaves架构相比,区别仅仅只是将第一级Slave集群换成了一台单独的Master,作为备用Master,然后再从这个备用的Master进行复制到一个Slave集群。
这种DualMaster与级联复制结合的架构,最大的好处就是既可以避免主Master的写入操作不会受到Slave集群的复制所带来的影响,同时主Master需要切换的时候也基本上不会出现重搭Replication的情况。但是,这个架构也有一个弊端,那就是备用的Master有可能成为瓶颈,因为如果后面的Slave集群比较大的话,备用Master可能会因为过多的SlaveIO线程请求而成为瓶颈。当然,该备用Master不提供任何的读服务的时候,瓶颈出现的可能性并不是特别高,如果出现瓶颈,也可以在备用Master后面再次进行级联复制,架设多层Slave集群。当然,级联复制的级别越多,Slave集群可能出现的数据延时也会更为明显,所以考虑使用多层级联复制之前,也需要评估数据延时对应用系统的影响。