About me:Oracle ACE pro,optimistic,passionate and harmonious. Focus on ORACLE,MySQL and other database programming,peformance tuning,db design, j2ee,Linux/AIX,Architecture tech,etc
全部博文(169)
分类: Oracle
2020-06-10 09:05:09
本次分享的内容是基于ORACLE的SQL优化,以一条巨慢的SQL为例,从快速解读SQL执行计划、如何从执行计划中找到SQL执行慢的Root Cause、统计信息与cardinality问题、探索性能杀手FILTER操作、如何进行逻辑重写让SQL起飞等多个维度进行解析,最终优化巨慢SQL语句,希望能够抛砖引玉,和大家一起探讨SQL优化方法。
另外,还简单介绍了两种解决疑难SQL优化问题的工具:10053和SQLT,特别是SQLT,往往在无计可施过程中,可能建立奇功,建议大家抽空研究下SQLT工具。最后对本次分享进行总结和思考:分享SQL Tuning RoadMap以及SQL Tuning最佳实践的相关内容。
内容大纲如下:
这条巨慢SQL执行预计耗时12小时以上,返回百万行数据。首先我们接手一条SQL优化问题,至少需要做以下两件事:
1)了解SQL结构:SQL中使用了哪些语法,这些语法是不是经常会导致性能问题,比如标量子查询的滥用。
2)获取执行计划:执行计划反应了SQL的执行路径,直接影响了SQL的执行效率。如何从执行计划中找出问题,是SQL Tuning的关键。
言归正传,先揭开巨慢SQL的神秘面纱:
这条语句其实就是查询DEALREC_ERR_201608表,然后有各种复杂的子查询,初看此子查询,其实我基本已经了解问题大概出在什么地方了,先卖个关子,看执行计划先:
这种执行计划拿到手,其实很容易找出问题:
1)分析指标问题:Rows,也就是每步骤的cardinality,很小,说明每步返回的结果行数很少。这点值得怀疑。
2)由于cardinality很少导致了Operation走了一系列Nested Loops操作,我们知道,NL操作,一般是驱动表返回的结果行数很少,被驱动表走索引,返回的最终结果比较少(一般最多几千行),效率会很高。
以上两点值得注意:如果cardinality是准确的,那么这个执行计划中走一系列Nested Loops的部分应该没有多大问题,但是,如果cardinality不是准确的呢?那就是大问题。这也就是一些初级开发人员的思维一样,经常喜欢对数据的处理使用循环,如果循环的次数少,那还好,如果循环次数很多,那么就会很慢。循环操作完全依赖于循环的次数,从SQL执行计划里看,也就是依赖于驱动表返回的结果行数,很显然,这种不适合大量数据运算。
3)在id=1中有个FILTER,这个FILTER的子操作是id=15~18的全表扫描。FILTER可是执行计划里的一个大问题,当然,这里的问题FILTER必须有2个或2个以上子节点的操作,如果是单节点,那只是简单的过滤条件而已。
对于一般的SQL优化,必须得分析SQL的语法结构,语义以及解读SQL执行计划,以SQL执行计划为基准,分析执行计划中的问题,来进行SQL Tuning,基本能解决大部分SQL优化问题了。
当然,以我的理解,SQL优化不仅需要很强的逻辑思维,正确的理论指导,各种SQL语法的精通,熟悉INDEX的使用,了解CBO相关内容,甚至还需从大局观进行把控:物理模型的设计以及对具体的业务分析。
SQL执行计划作为SQL优化的一把钥匙,必须要很好的利用起来。经常看到开发人员喜欢用PL/SQL
DEVELOPER之类的工具来看执行计划,这里我得提醒下,这种内部调用的是EXPLAIN PLAN FOR,可能不够准确,特别是有绑定变量的情况下,最重要的一点,对于长的SQL执行计划,简直没法进行分析,个人还是喜欢文本类型的执行计划,特别是真实的执行计划,能获取A-ROWS,E-ROWS这些指标的执行计划,让我对执行计划中的问题一览无余,特别对于巨慢的SQL,也可以运行个几分钟中断后获取部分信息来协助判断。执行计划要点如下:
找入口:通过最右最上最先执行原则找出执行计划入口操作。对于巨长执行计划COPY到UE里使用光标缩进下探法则可找出入口,由于执行计划是锯齿状结构,父节点的子操作是向右缩进的,因此,从id=0开始,光标向下向右缩进下探,直到缩进不了停止,然后按照同级别的,也就是格式的垂直线是同一级的,上面的是入口。
看关系:各操作之间的关系:NESED LOOPS、HASH JOIN、FILTER等是否准确,以及操作的顺序是否准确,直接关系此操作甚至影响整个SQL的执行效率。
理顺序:一步走错,满盘皆输。通过理清执行计划顺序找出key steps。
重操作:执行计划中的Operation和Predicate部分是需要关注的核心内容,从操作中看出不合理部分,以此建立正确索引等优化措施。
求真实:执行计划中指标是估算的,估算的指标和实际情况很可能不匹配。所以优化SQL需要了解每步骤真实的基数、真实执行时间和Buffer gets等,从而准确找出问题Root cause。(可以根据谓词手动计算、建议采用display_cursor方式获取A-ROWS、A-TIME等信息,工具有很多,也可以使用sql monitor等),如果采用EXPLAIN PLAN FOR,SET AUTOTRACE之类的看执行计划,由于指标信息是不准的,要获取真实的信息,还需要手动根据谓词去计算,然后比较估算的和真实的差别,从而判断问题。
轻成本:COST虽然是CBO的核心内容,但是因为执行计划中COST不一定准确反应SQL快慢,因此不要唯COST论,COST只是一个参考指标,当然可以通过执行计划判断一些COST是否明显存在问题,比如COST非常小,但是SQL执行很慢,可能就是统计信息不准确了。
这里的入口是ID=6的全表扫描,返回行是1行,不是准确的,很显然,找到入口的问题,已经可以解决一部分问题了。
第一次分析:解决Id=6步骤估算的cardinality不准确问题。
未完待续,参考PART2: