分类: 嵌入式
2011-03-22 13:39:41
一个程序本质上都是由 bss段、data段、text段三个组成的。这样的概念,不知道最初来源于哪里的规定,但在当前的计算机程序设计中是很重要的一个基本概念。而且在嵌入式系统的设计中也非常重要,牵涉到嵌入式系统运行时的内存大小分配,存储单元占用空间大小的问题。 在采用段式内存管理的架构中(比如intel的80x86系统),bss段(ted by Symbol segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域 ,一般在初始化时bss 段Block Star部分将会清零。bss段属于静态内存分配,即程序一开始就将其清零了。在C语言之类的程序编译完成之后,已初始化的全局变量保存在.data 段中,未初始化的全局变量保存在.bss 段中 。
寄存器一般分为以下几类 4个数据寄存器(EAX、EBX、ECX和EDX) ①数据寄存器 AX称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高;
②变址和指针寄存器(ESI和EDI) 寄存器ESI、EDI、SI和DI统称为变址寄存器(Index Register),主要用于存放存储单元在段内的偏移量 , 通过它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果 。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,且具有特殊的功能
③指针寄存器(ESP和EBP) 32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的BP和SP,低16位数据的存取不影响高16位的数据。 寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。 作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据;
④段寄存器(ES、CS、SS、DS、FS和GS) CS——代码段 寄存器(Code Segment Register),其值为代码段的段值; ES——附加段寄存器(Extra Segment Register),其值为附加数据段的段值;
在16位CPU系统中,它只有4个段寄存器.在32位微机系统中,它有6个段寄存器.
32位CPU有两个不同的工作方式:实模式和保护模式。在每种方式下,段寄存器的作用是不同的。有关规定简单描述如下: 实模式: 前4个段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑地址仍为“段值:偏移量”的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。
注:这里特别提供FS寄存器的偏移说明 FS寄存器指向当前活动线程的TEB结构(线程结构) 举例: POP DWORD PTR FS:[004] 这个句指令的意思就是将堆栈顶部的4个字节的字符弹栈出去!
⑤指令指针寄存器(EIP) 32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 在实模式下,由于每个段的最大范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位的IP来反映程序中指令的执行次序。
6、标志寄存器 一、运算结果标志位 使用该标志位的情况有:多字(字节)数的加减运算,无符号数的大小比较运算,移位操作,字(字节)之间移位,专门改变CF值的指令等。 2、奇偶标志PF(Parity Flag) 利用PF可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。 3、辅助进位标志AF(Auxiliary Carry Flag) (1)、在字操作时,发生低字节向高字节进位或借位时; 对以上6个运算结果标志位,在一般编程情况下,标志位CF、ZF、SF和OF的使用频率较高,而标志位PF和AF的使用频率较低。 4、零标志ZF(Zero Flag) 5、符号标志SF(Sign Flag) 6、溢出标志OF(Overflow Flag) “溢出”和“进位”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅《计算机组成原理》课程中的有关章节。 二、状态控制标志位 1、追踪标志TF(Trap Flag) 指令系统中没有专门的指令来改变标志位TF的值,但程序员可用其它办法来改变其值。 2、中断允许标志IF(Interrupt-enable Flag) (1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求; (2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。 CPU的指令系统中也有专门的指令来改变标志位IF的值。 3、方向标志DF(Direction Flag) 三、32位标志寄存器增加的标志位 2、嵌套任务标志NT(Nested Task) (1)、当NT=0,用堆栈中保存的值恢复EFLAGS、CS和EIP,执行常规的中断返回操作; (2)、当NT=1,通过任务转换实现中断返回。 3、重启动标志RF(Restart Flag) 如果该标志的值为1,则表示处理机处于虚拟的8086方式下的工作状 |