Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1092192
  • 博文数量: 242
  • 博客积分: 10209
  • 博客等级: 上将
  • 技术积分: 3028
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-12 09:27
文章分类

全部博文(242)

文章存档

2014年(1)

2013年(1)

2010年(51)

2009年(65)

2008年(124)

我的朋友

分类: LINUX

2009-05-11 10:53:08

在第一部分中我们已经看到ptrace怎么获取子进程的系统调用以及改变系统调用的参数。在这篇文章中,我们将要研究如何在子进程中设置断点和 往运行中的程序里插入代码。实际上调试器就是用这种方法来设置断点和执行调试句柄。与前面一样,这里的所有代码都是针对i386平台的。
 
附着在进程上
 
在第一部分钟,我们使用ptrace(PTRACE_TRACEME, …)来跟踪一个子进程,如果你只是想要看进程是怎么进行系统调用和跟踪程序的,这个做法是不错的。但如果你要对运行中的进程进行调试,则需要使用 ptrace( PTRACE_ATTACH, ….)
 
当 ptrace( PTRACE_ATTACH, …)在被调用的时候传入了子进程的pid时, 它大体是与ptrace( PTRACE_TRACEME, …)的行为相同的,它会向子进程发送SIGSTOP信号,于是我们可以察看和修改子进程,然后使用 ptrace( PTRACE_DETACH, …)来使子进程继续运行下去。
 
下面是调试程序的一个简单例子

int main()
{
   int i;
    for(i = 0;i < 10; ++i) {
        printf("My counter: %d ", i);
        sleep(2);
    }
    return 0;
}

将上面的代码保存为dummy2.c。按下面的方法编译运行:

gcc -o dummy2 dummy2.c
./dummy2 &
 

现在我们可以用下面的代码来附着到dummy2上。

 

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h> /**/
/* For user_regs_struct
                             etc. */

int main(int argc, char *argv[])
{
    pid_t traced_process;
    struct user_regs_struct regs;
    long ins;
    if(argc != 2) ...{
        printf("Usage: %s ",
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process,
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process,
           NULL, &regs);
    ins = ptrace(PTRACE_PEEKTEXT, traced_process,
                 regs.eip, NULL);
    printf("EIP: %lx Instruction executed: %lx ",
           regs.eip, ins);
    ptrace(PTRACE_DETACH, traced_process,
           NULL, NULL);
    return 0;
}

上面的程序仅仅是附着在子进程上,等待它结束,并测量它的eip( 指令指针)然后释放子进程。 

设置断点 

调试器是怎么设置断点的呢?通常是将当前将要执行的指令替换成trap指令,于是被调试的程序就会在这里停滞,这时调试器就可以察看被调试程序的信息了。被调试程序恢复运行以后调试器会把原指令再放回来。这里是一个例子:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>

const int long_size = sizeof(long);

void getdata(pid_t child, long addr,
             char *str, int len)
{
    char *laddr;
    int i, j;
    union u ...{
            long val;
            char chars[long_size];
    }data;

    i = 0;
    j = len / long_size;
    laddr = str;

    while(i < j) ...{
        data.val = ptrace(PTRACE_PEEKDATA, child,
                          addr + i * 4, NULL);
        memcpy(laddr, data.chars, long_size);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) ...{
        data.val = ptrace(PTRACE_PEEKDATA, child,
                          addr + i * 4, NULL);
        memcpy(laddr, data.chars, j);
    }
    str[len] = '';
}

void putdata(pid_t child, long addr,
             char *str, int len)
{
    char *laddr;
    int i, j;
    union u ...{
            long val;
            char chars[long_size];
    }data;

    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) ...{
        memcpy(data.chars, laddr, long_size);
        ptrace(PTRACE_POKEDATA, child,
               addr + i * 4, data.val);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) ...{
        memcpy(data.chars, laddr, j);
        ptrace(PTRACE_POKEDATA, child,
               addr + i * 4, data.val);
    }
}

int main(int argc, char *argv[])
{
    pid_t traced_process;
    struct user_regs_struct regs, newregs;
    long ins;
    /**//* int 0x80, int3 */
    char code[] = ...{0xcd,0x80,0xcc,0};
    char backup[4];
    if(argc != 2) ...{
        printf("Usage: %s ",
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process,
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process,
           NULL, &regs);
    /**//* Copy instructions into a backup variable */
    getdata(traced_process, regs.eip, backup, 3);
    /**//* Put the breakpoint */
    putdata(traced_process, regs.eip, code, 3);
    /**/
/* Let the process continue and execute
       the int 3 instruction */

    ptrace(PTRACE_CONT, traced_process, NULL, NULL);
    wait(NULL);
    printf("The process stopped, putting back "
           "the original instructions ");
    printf("Press to continue ");
    getchar();
    putdata(traced_process, regs.eip, backup, 3);
    /**/
/* Setting the eip back to the original
       instruction to let the process continue */

    ptrace(PTRACE_SETREGS, traced_process,
           NULL, &regs);
    ptrace(PTRACE_DETACH, traced_process,
           NULL, NULL);
    return 0;

}

上面的程序将把三个byte的内容进行替换以执行trap指令,等被调试进程停滞以后,我们把原指令再替换回来并把eip修改为原来的值。下面的图中演示了指令的执行过程

   
 1. 进程停滞后  2. 替换入trap指令
   
 3.断点成功,控制权交给了调试器  4. 继续运行,将原指令替换回来并将eip复原

在了解了断点的机制以后,往运行中的程序里面添加指令也不再是难事了,下面的代码会使原程序多出一个”hello world”的输出 

这时一个简单的”hello world”程序,当然为了我们的特殊需要作了点修改:

void main()
{
__asm__(
"
         jmp forward
backward:
         popl %esi # Get the address of
                          # hello world string
         movl $4, %eax # Do write system call
         movl $2, %ebx
         movl %esi, %ecx
         movl $12, %edx
         int $0x80
         int3 # Breakpoint. Here the
                          # program will stop and
                          # give control back to
                          # the parent
forward:
         call backward
         .string "
Hello World\n""
       );
}

使用 gcc –o hello hello.c来编译它。 (自己调试时还有错误,双引号中的双引号问题不知该如何解决,还望高人指点,下面就直接用现成的机器码了)

在backward和forward之间的跳转是为了使程序能够找到”hello world” 字符串的地址。

使用GDB我们可以得到上面那段程序的机器码。启动GDB,然后对程序进行反汇编:

(gdb) disassemble main
Dump of assembler code for function main:
0x80483e0 <main>: push %ebp
0x80483e1 <main+1>: mov %esp,%ebp
0x80483e3 <main+3>: jmp 0x80483fa <forward>
End of assembler dump.
(gdb) disassemble forward
Dump of assembler code for function forward:
0x80483fa <forward>: call 0x80483e5 <backward>
0x80483ff <forward+5>: dec %eax
0x8048400 <forward+6>: gs
0x8048401 <forward+7>: insb (%dx),%es:(%edi)
0x8048402 <forward+8>: insb (%dx),%es:(%edi)
0x8048403 <forward+9>: outsl %ds:(%esi),(%dx)
0x8048404 <forward+10>: and %dl,0x6f(%edi)
0x8048407 <forward+13>: jb 0x8048475
0x8048409 <forward+15>: or %fs:(%eax),%al
0x804840c <forward+18>: mov %ebp,%esp
0x804840e <forward+20>: pop %ebp
0x804840f <forward+21>: ret
End of assembler dump.
(gdb) disassemble backward
Dump of assembler code for function backward:
0x80483e5 <backward>: pop %esi
0x80483e6 <backward+1>: mov $0x4,%eax
0x80483eb <backward+6>: mov $0x2,%ebx
0x80483f0 <backward+11>: mov %esi,%ecx
0x80483f2 <backward+13>: mov $0xc,%edx
0x80483f7 <backward+18>: int $0x80
0x80483f9 <backward+20>: int3
End of assembler dump.

我们需要使用从man+3到backward+20之间的字节码,总共41字节。使用GDB中的x命令来察看机器码。

 

(gdb) x/40bx main+3
<main+3>: eb 15 5e b8 04 00 00 00
<backward+6>: bb 02 00 00 00 89 f1 ba
<backward+14>: 0c 00 00 00 cd 80 cc
<forward+1>: e6 ff ff ff 48 65 6c 6c
<forward+9>: 6f 20 57 6f 72 6c 64 0a

已经有了我们想要执行的指令,还等什么呢?只管把它们根前面那个例子一样插入到被调试程序中去! 

代码:

int main(int argc, char *argv[])
{
pid_t traced_process;
    struct user_regs_struct regs, newregs;
    long ins;
    int len = 41;
    char insertcode[] =
        "\xeb\x15\x5e\xb8\x04\x00"
        "\x00\x00\xbb\x02\x00\x00\x00\x89\xf1\xba"
        "\x0c\x00\x00\x00\xcd\x80\xcc\xe8\xe6\xff"
        "\xff\xff\x48\x65\x6c\x6c\x6f\x20\x57\x6f"
        "\x72\x6c\x64\x0a\x00";
    char backup[len];
    if(argc != 2) ...{
        printf("Usage: %s ",
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process,
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process,
           NULL, &regs);
    getdata(traced_process, regs.eip, backup, len);
    putdata(traced_process, regs.eip,
            insertcode, len);
    ptrace(PTRACE_SETREGS, traced_process,
           NULL, &regs);
    ptrace(PTRACE_CONT, traced_process,
           NULL, NULL);
    wait(NULL);
    printf("The process stopped, Putting back "
           "the original instructions ");
    putdata(traced_process, regs.eip, backup, len);
    ptrace(PTRACE_SETREGS, traced_process,
           NULL, &regs);
    printf("Letting it continue with "
           "original flow ");
    ptrace(PTRACE_DETACH, traced_process,
           NULL, NULL);
    return 0;
}

将代码插入到自由空间 

在前面的例子中我们将代码直接插入到了正在执行的指令流中,然而,调试器可能会被这种行为弄糊涂,所以我们决定把指令插入到进程中的自由空间中去。通过察看/proc/pid/maps可以知道这个进程中自由空间的分布。接下来这个函数可以找到这个内存映射的起始点:

long freespaceaddr(pid_t pid)
{
    FILE *fp;
    char filename[30];
    char line[85];
    long addr;
    char str[20];
    sprintf(filename, "/proc/%d/maps", pid);
    fp = fopen(filename, "r");
    if(fp == NULL)
        exit(1);
    while(fgets(line, 85, fp) != NULL) ...{
        sscanf(line, "%lx-%*lx %*s %*s %s", &addr,
               str, str, str, str);
        if(strcmp(str, "00:00") == 0)
            break;
    }
    fclose(fp);
    return addr;
}


/proc/pid/maps中的每一行都对应了进程中一段内存区域。主函数的代码如下:


int main(int argc, char *argv[])
{
    pid_t traced_process;
    struct user_regs_struct oldregs, regs;
    long ins;
    int len = 41;
    char insertcode[] =
        "\xeb\x15\x5e\xb8\x04\x00"
        "\x00\x00\xbb\x02\x00\x00\x00\x89\xf1\xba"
        "\x0c\x00\x00\x00\xcd\x80\xcc\xe8\xe6\xff"
        "\xff\xff\x48\x65\x6c\x6c\x6f\x20\x57\x6f"
        "\x72\x6c\x64\x0a\x00";
    char backup[len];
    long addr;
    if(argc != 2) ...{
        printf("Usage: %s ",
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process,
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process,
           NULL, &regs);
    addr = freespaceaddr(traced_process);
    getdata(traced_process, addr, backup, len);
    putdata(traced_process, addr, insertcode, len);
    memcpy(&oldregs, &regs, sizeof(regs));
    regs.eip = addr;
    ptrace(PTRACE_SETREGS, traced_process,
           NULL, &regs);
    ptrace(PTRACE_CONT, traced_process,
           NULL, NULL);
    wait(NULL);
    printf("The process stopped, Putting back "
           "the original instructions ");
    putdata(traced_process, addr, backup, len);
    ptrace(PTRACE_SETREGS, traced_process,
           NULL, &oldregs);
    printf("Letting it continue with "
           "original flow ");
    ptrace(PTRACE_DETACH, traced_process,
           NULL, NULL);
    return 0;
}

ptrace的幕后工作

那么,在使用ptrace的时候,内核里发生了声么呢?这里有一段简要的说明:当一个进程调用了 ptrace( PTRACE_TRACEME, …)之后,内核为该进程设置了一个标记,注明该进程将被跟踪。内核中的相关原代码如下:

Source: arch/i386/kernel/ptrace.c
if (request == PTRACE_TRACEME) {
    /* are we already being traced? */
    if (current->ptrace & PT_PTRACED)
        goto out;
    /* set the ptrace bit in the process flags. */
    current->ptrace |= PT_PTRACED;
    ret = 0;
    goto out;
}

一次系统调用完成之后,内核察看那个标记,然后执行trace系统调用(如果这个进程正处于被跟踪状态的话)。其汇编的细节可以在 arh/i386/kernel/entry.S中找到。 

现在让我们来看看这个sys_trace()函数(位于 arch/i386/kernel/ptrace.c )。它停止子进程,然后发送一个信号给父进程,告诉它子进程已经停滞,这个信号会激活正处于等待状态的父进程,让父进程进行相关处理。父进程在完成相关操 作以后就调用ptrace( PTRACE_CONT, …)或者 ptrace( PTRACE_SYSCALL, …), 这将唤醒子进程,内核此时所作的是调用一个叫wake_up_process() 的进程调度函数。其他的一些系统架构可能会通过发送SIGCHLD给子进程来达到这个目的。 

小结:

ptrace函数可能会让人们觉得很奇特,因为它居然可以检测和修改一个运行中的程序。这种技术主要是在调试器和系统调用跟踪程序中使用。它使程序 员可以在用户级别做更多有意思的事情。已经有过很多在用户级别下扩展操作系统得尝试,比如UFO,一个用户级别的文件系统扩展,它使用ptrace来实现 一些安全机制。
阅读(802) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~