Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3665862
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2022-06-02 16:50:39

import numpy as np

import PIL

import PIL.Image

import scipy

import scipy.ndimage

import dlib

def get_landmark(filepath, predictor):

    """get landmark with dlib

    :return: np.array shape=(68, 2)

    """

    detector = dlib.get_frontal_face_detector()

    img = dlib.load_rgb_image(filepath)

    dets = detector(img, 1)

    for k, d in enumerate(dets):

        shape = predictor(img, d)

    t = list(shape.parts())

    a = []

    for tt in t:

        a.append([tt.x, tt.y])

    lm = np.array(a)

    return lm

def align_face(filepath, predictor):

    """

    :param filepath: str

    :return: PIL Image

    """

    lm = get_landmark(filepath, predictor)

    lm_chin = lm[0: 17]  # left-right

    lm_eyebrow_left = lm[17: 22]  # left-right

    lm_eyebrow_right = lm[22: 27]  # left-right

    lm_nose = lm[27: 31]  # top-down

    lm_nostrils = lm[31: 36]  # top-down

    lm_eye_left = lm[36: 42]  # left-clockwise

    lm_eye_right = lm[42: 48]  # left-clockwise

    lm_mouth_outer = lm[48: 60]  # left-clockwise

    lm_mouth_inner = lm[60: 68]  # left-clockwise

    # Calculate auxiliary vectors.

    eye_left = np.mean(lm_eye_left, axis=0)

    eye_right = np.mean(lm_eye_right, axis=0)

    eye_avg = (eye_left + eye_right) * 0.5

    eye_to_eye = eye_right - eye_left

    mouth_left = lm_mouth_outer[0]

    mouth_right = lm_mouth_outer[6]

    mouth_avg = (mouth_left + mouth_right) * 0.5

    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.

    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]

    x /= np.hypot(*x)

    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)

    y = np.flipud(x) * [-1, 1]

    c = eye_avg + eye_to_mouth * 0.1

    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])

    qsize = np.hypot(*x) * 2

    # read image

    img = PIL.Image.open(filepath)

    output_size = 256

    transform_size = 256

    enable_padding = True

    # Shrink.

    shrink = int(np.floor(qsize / output_size * 0.5))

    if shrink > 1:

        rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))

        img = img.resize(rsize, PIL.Image.ANTIALIAS)

        quad /= shrink

        qsize /= shrink

    # Crop.

    border = max(int(np.rint(qsize * 0.1)), 3)

    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),

            int(np.ceil(max(quad[:, 1]))))

    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),

            min(crop[3] + border, img.size[1]))

    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:

        img = img.crop(crop)

        quad -= crop[0:2]

    # Pad.

    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),

           int(np.ceil(max(quad[:, 1]))))

    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),

           max(pad[3] - img.size[1] + border, 0))

    if enable_padding and max(pad) > border - 4:

        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))

        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')

        h, w, _ = img.shape

        y, x, _ = np.ogrid[:h, :w, :1]

        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),

                          1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))

        blur = qsize * 0.02

        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)

        img += 跟单网gendan5.com(np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)

        img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')

        quad += pad[:2]

    # Transform.

    img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)

    if output_size < transform_size:

        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

    # Return aligned image.

    return img

阅读(543) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~