分类: Python/Ruby
2021-04-16 17:13:22
平滑线性空间滤波器
盒状态滤波
import numpy as np
from scipy import signal
from skimage import data, io
from matplotlib import pyplot as plt
# 定义二维灰度图像的空间滤波函数
def correl2d(img, window):
s = signal.correlate2d(img, window, mode='same', boundary='fill')
return s.astype(np.uint8)
img = data.grass()
#img = io.imread('tomato.jpg')
# 3*3 盒状滤波模板
window1 = np.ones((3, 3)) / (3 ** 2)
# 5*5 盒状滤波模板
window2 = np.ones((5, 5)) / (5 ** 2)
# 9*9 盒状滤波模板
window3 = np.ones((9, 9)) / (9 ** 2)
# 生成滤波结果
img1 = correl2d(img, window1)
img2 = correl2d(img, window2)
img3 = correl2d(img, window3)
plt.figure()
plt.imshow(img)
plt.figure()
plt.imshow(img1)
plt.figure()
plt.imshow(img2)
plt.figure()
plt.imshow(img3)
plt.show()
高斯平滑滤波
使用data自带图像
import numpy as np
from scipy import signal
from skimage import data, io
from matplotlib import pyplot as plt
import math
# 定义二维灰度图像的空间滤波函数
def correl2d(img, window):
#mode='same' 表示输出尺寸等于输入尺寸
#boundary=‘fill’ 表示滤波前,用常量值填充原始图像的边缘,默认常量值为0
s = signal.correlate2d(img, window, mode='same', boundary='fill')
return s.astype(np.uint8)
# 定义二维高斯函数
def gauss(i, j, sigma):
return 1 / (2 * math.pi * sigma ** 2) * math.exp(-(i ** 2 + j ** 2) / (2 * sigma ** 2))
# 定义radius*radius的高斯平滑模板
def gauss_window(radius, sigma):
window = np.zeros((radius * 2 + 1, radius * 2 + 1))
for i in range(-radius, radius + 1):
for j in range(-radius, radius + 1):
window[i + radius][j + radius] = gauss(i, j, sigma)
return window / np.sum(window)
img = data.grass()
# 3*3 高斯平滑滤波模板
window1 = gauss_window(3, 1.0)
# 5*5 高斯平滑滤波模板
window2 = gauss_window(5, 1.0)
# 9*9 高斯平滑滤波模板
window3 = gauss_window(9, 1.0)
# 生成滤波结果
img1 = correl2d(img, window1)
img2 = correl2d(img, window2)
img3 = correl2d(img, window3)
plt.figure()
plt.imshow(img, cmap='gray')
plt.figure()
plt.imshow(img1, cmap='gray')
plt.figure()
plt.imshow(img2, cmap='gray')
plt.figure()
plt.imshow(img3, cmap='gray')
plt.show()
导入外部图像:
import cv2
import numpy as np
from scipy import ndimage
img1 = cv2.imread('tomato.jpg')
gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) # 灰色
cv2.imwrite('gray.jpg', gray)
kernel_3x3 = np.array([
[1, 2, 1],
[2, 4, 2],
[1, 2, 1]
])
kernel_5x5 = np.array([
[1, 4, 7, 4, 1],
[4, 16, 26, 16, 4],
[7, 26, 41, 26, 7],
[4, 16, 26, 16, 4],
[1, 4, 7, 4, 1]
])
kernel_3x3 = kernel_3x3 / kernel_3x3.sum() # 加权平均
kernel_5x5 = kernel_5x5 / kernel_5x5.sum() # 加权平均
img = cv2.imread("tomato.jpg", 0)
k3 = ndimage.convolve(img, kernel_3x3)
k5 = ndimage.convolve(img, kernel_5x5)
cv2.imshow("3x3", k3)
cv2.imshow("5x5", k5)
cv2.imwrite('k3.jpg', k3)
cv2.imwrite('k5.jpg', k5)
cv2.waitKey()