Chinaunix首页 | 论坛 | 博客
  • 博客访问: 776439
  • 博文数量: 217
  • 博客积分: 2401
  • 博客等级: 大尉
  • 技术积分: 2030
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-16 06:58
个人简介

怎么介绍?

文章分类

全部博文(217)

文章存档

2023年(2)

2022年(3)

2021年(28)

2020年(12)

2019年(5)

2018年(5)

2017年(5)

2016年(3)

2015年(6)

2014年(12)

2013年(16)

2012年(9)

2011年(6)

2010年(15)

2009年(30)

2008年(59)

我的朋友

分类:

2008-04-12 01:45:10


Two rockets have the same speed v. The original distance is L. At the
beginning, one is moving perpendicularly to the line segment between the two
rockets, and its speed and direction is unchanged. The other is always
aiming at the first one. So, what is the final distance of these two rockets
?


Assume the B is purchasing A. A is moving to direction of x+.
x(A), x(B) is the x coordinates of A and B.
we can see the fact that x(A)-x(B) + |AB| = constant.
At beginning, x(A)-x(B) = 0, |AB| = L
At the end, x(A)-x(B) = |AB| = L/2.


is there a trivial way to show that x(A)-x(B) + |AB| = constant?


d|AB|/dt = v cos theta - v
d(xa -xb) /dt = v - v cos theta

theta is the angle between AB and x direction.

The distance between two airplanes A and B is a at time 0. Plane A flying  north at speed v, and plane B will fly toward A at the same speed v. What is the trajectory of B?

y'=dy/dx=(vt-y)/x
and
\int_x^a \sqrt{1+y'^2} dx = vt

Solvable.


阅读(956) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~