Chinaunix首页 | 论坛 | 博客
  • 博客访问: 776355
  • 博文数量: 217
  • 博客积分: 2401
  • 博客等级: 大尉
  • 技术积分: 2030
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-16 06:58
个人简介

怎么介绍?

文章分类

全部博文(217)

文章存档

2023年(2)

2022年(3)

2021年(28)

2020年(12)

2019年(5)

2018年(5)

2017年(5)

2016年(3)

2015年(6)

2014年(12)

2013年(16)

2012年(9)

2011年(6)

2010年(15)

2009年(30)

2008年(59)

我的朋友

分类:

2008-04-11 01:51:05


任给n个数,证明平均值和中位数的差小于等于标准差
或者给一个随机变量X, 证明
(med(X)-mean(X))^2 <= var(X)


a very classical question. one-side chebychev.

actually, there is a more interesting proof that does not employ
the one-sided chebyshev; which could be understood by almost anyone here.


here it is~

|med(X) - E(X)| <= E|X - med(X)| <= E|X - mean(X)|

<= \sqrt{E|X - mean(X)|^2} <= std(X)

for nonrandom case, the second inequality means that the median minimize L1
error, the last inequality is obtained either by jensen's or by cauchy-
schwarz.

First, we will see why means and medians relate to squares and absolute values. Let xi be an arbitrary number. Let us define m2 by the minimization of the sum of squared differences (called the L2 norm) between m2 and xi:


\begin{displaymath}
m_2: \qquad \quad \min \, \sum_{i=1}^N \, (m_2 - x_i)^2\end{displaymath} (62)

It is a straight forward task to find the minimum by setting the partial derivative of the sum with respect to m2 equal to zero. We get

\begin{displaymath}
0 \eq \sum_{i=1}^N \, 2(m_2 - x_i)\end{displaymath}

or

\begin{displaymath}
m_2 \eq {1 \over N} \; \sum_{i=1}^N \, x_i\end{displaymath} (63)

Obviously, m2 has turned out to be given by the usual definition of mean. Next, let us define m1 by minimizing the summed absolute values (called the L1 norm). We have


\begin{displaymath}
m_1: \qquad \quad \min \, \sum_{i=1}^N \, \vert m_1 \, - \, x_i\vert\end{displaymath} (64)

To find the minimum we may again set the partial derivative with respect to m1 equal to zero


\begin{displaymath}
0\eq \sum_{i-1}^N \, \rm{sgn} \, (m_1 - x_i)\end{displaymath} (65)

Here the sgn function is +1 when the argument is positive, -1 when the argument is negative, and somewhere in between when the argument is zero. Equation () says that m1 should be chosen so that m1 exceeds xi for N/2 terms, m1 is less than xi for N/2 terms, and if there is an xi left in the middle, m1 equals that xi. this defines m1 as a median. [For an even number N the definition () requires only the m1 lie anywhere between the middle two values of the xi.]



阅读(1682) | 评论(0) | 转发(0) |
0

上一篇:max vx min

下一篇:Rockets

给主人留下些什么吧!~~