2018年(273)
分类: 大数据
2018-07-11 15:33:20
目前人工智能和大数据火热,使用的场景也越来越广,日常开发中前端同学也逐渐接触了更多与大数据相关的开发需求。因此对大数据知识也有必要进行一些学习理解
一、数据的存储:分布式文件系统(分布式存储)
二、数据的计算:分部署计算
学习大数据需要具备Java知识基础及Linux知识基础
(1)Java基础和Linux基础
(2)Hadoop的学习:体系结构、原理、编程
第一阶段:HDFS、MapReduce、HBase(NoSQL数据库)
第二阶段:数据分析引擎 -> Hive、Pig
数据采集引擎 -> Sqoop、Flume
第三阶段:HUE:Web管理工具
ZooKeeper:实现Hadoop的HA Oozie:工作流引擎
(3)Spark的学习
第一阶段:Scala编程语言 第二阶段:Spark Core -> 基于内存、数据的计算 第三阶段:Spark SQL -> 类似于mysql 的sql语句 第四阶段:Spark Streaming ->进行流式计算:比如:自来水厂
(4)Apache Storm 类似:Spark Streaming ->进行流式计算
NoSQL:Redis基于内存的数据库