Chinaunix首页 | 论坛 | 博客
  • 博客访问: 274477
  • 博文数量: 138
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 971
  • 用 户 组: 普通用户
  • 注册时间: 2015-03-03 10:05
文章分类

全部博文(138)

文章存档

2016年(1)

2015年(137)

我的朋友

分类: C/C++

2015-06-03 11:47:23

排序分类

1.简单选择排序 2.堆排序  (1和2是属于选择排序,都是选择最大的,与当前的交换)

3.直接插入排序 4.希尔排序     (3和4属于插入排序,有时把改进后的直接插入排序叫做二分插入:根据插入排序的思想,在插入待排序列的第i个元素时,由于前面的序列已经有序,因此可以使用二分法寻找第i个元素的正确位置。最好O(N*log)

5.冒泡排序         6.快速排序     (5和6属于交换排序.交换排序顾名思义是不停的交换数据位置.但实际上选择排序也在不停的交换元素,但次数较少,只有找到最大值才一次交换.侧重点还是在通过遍历或堆来选择出最值.而冒泡排序就是通过不停交换相邻元素得出最大值,快速排序也在不停交换元素使序列一步步接近有序.侧重在交换)

7.基数排序       8.桶排序         (7和8属于分配排序)
(基数排序:将所有待比较数值(注意,必须是正整数)统一为同样的数位长度,数位较短的数前面补零. 然后, 从最低位开始, 依次进行一次稳定排序(我们常用上一篇blog介绍的计数排序算法, 因为每个位可能的取值范围是固定的从0到9).这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列.)

9.归并排序

1-6、9属于 基于比较的排序,时间复杂度最好可以为O(N*logN)
7、8 是非比较的排序
稳定性:

另外要注意的是:算法思想的本身是独立于编程语言的,所以你写代码去实现算法的时候很多细节可以做不同的处理.采用不稳定算法不管你具体实现时怎么写代码,最终相同元素位置总是不确定的(可能位置没变也可能变了).而稳定排序算法是你在具体实现时如果细节方面处理的好就会是稳定的,但有些细节没处理得到的结果仍然是不稳定的.

比如冒泡排序,直接插入排序,归并排序虽然是稳定排序算法,但如果你实现时细节没处理好得出的结果也是不稳定的.

它体现了程序的健壮性.比如你网站上针对最热门的文章或啥音乐电影之类的进行排名.由于这里排名不会像我们成绩排名会有并列第几名之说.所以出现了元素相等时也会有先后之分.如果添加进新的元素之后又要重新排名了.之前并列名次的最好是依然保持先后顺序才比较好.

稳定性算法:   冒泡排序, 直接插入排序 , 归并排序 ,基数排序(因为每一位都是稳定排序)

不稳定性算法: 选择排序,希尔排序, 快速排序,  ,堆排序 桶排序

各种算法稳定性详解

(1)基数排序(稳定)与桶排序(不稳定)

这两种算法都是属于分配排序算法.(利用元素值本身的信息直接映射到一个辅助序列中变成有序的.而不是通过与其他元素比较确定顺序位置)

基数排序因为在是把低位按顺序映射到一个临时序列中去,是依次序映射,没有涉及到数据位置的变动.然后再按高位顺序映射.所以相同元素也是按次序映射过去.所以是稳定的

如果数据元素没有重复的则采用简单桶排序,此时没有重复元素,所以自然不存在稳不稳定这一说.如果有重复元素得用改进的桶排序.此时辅助的临时数组只是通过索引来识别待排序元素的键值.丢失了其他信息(这是所有采用辅助的临时序列的算法中唯一一个会丢失信息的算法).假如待排序元素是一个map类型,按它的键值来排序.其他算法采用辅助序列时是把map类型做为元素去考虑的.而只有改进的桶排序不会把map类型当元素,只是利用到了键值信息. 这样一来就无法区分键值相同的信息,因此自然是不稳定的算法了啊.

 

(2)归并排序(稳定)

归并排序使得了递归的思想,把序列递归的分割成小序列,然后合并排好序的子序列.当有序列的左右两子序列合并的时候一般是先遍历左序列,所在左右序列如果有相等元素,则处在左边的仍然在前,这就稳定了.但是如果你非得先遍历右边序列则算法变成不稳定的了.虽然这样排出来的序也是对的,但变成了不稳定的,所以是不太好的实现.

 

(3)简单选择排序(不稳定)与堆排序(不稳定)

这两种算法都属于选择排序.(从待排序的元素中挑选出最大或最小值.下面的例子以最小值为例)

简单选择排序由于选出最小值后需要交换位置,位置一变就会变得不稳定.例如8  3  8  1.当从左往右遍历找最小值时,找到了1,这就需要把8跟1交换.这样两个相等元素8的位置就变了.

堆排序的话,也会存在跟上面一样的交换最大值的位置会导致不稳定.例如有大堆 8 8 6 5 2.先选出第一个最大值8,放最末尾.此时就不稳定了.因为第二个8就跑它前面去了.

 

(4)冒泡排序(稳定)与快速排序(不稳定)

这两种算法都属于交换排序.

冒泡是通过不停的遍历,以升序为例,如果相邻元素中左边的大于右边的则交换.碰到相等的时就不交换保持原位.所以是稳定的.当然如果你非得吃饱了撑着了,在碰到相等的时也交换下,那肯定变成不稳定的算法了.

快速排序是不稳定的.举例8   5   6  6 .以8为基准,第一趟交换后最后一个6跑到第一位,8到最后.第二趟交换.这个6跑到5的位置.变成有序的了.两个6位置变了,所以是不稳定的.

 

(5)直接插入(稳定),二分插入排序(不稳定)与希尔排序(不稳定)

直接插入时是先在已排序好的的子序列中找到合适的位置再插入.假设左边是已排序的,右边是没排序的.通过从后向前遍历已排序序列,然后插入,此时相等元素依然可以保持原有位置.但是如果你从前向后遍历已排序序列就会是不稳定排序了.

二分插入排序是不稳定的,因为通过二分查找时得到的位置不稳定.例如3 4 4 5 4.但把最后一个4插入时肯定会跑到第二个4前面去了.所以是不稳定的.

 

 

通过上面的分析我们可以得出这样一个经验之谈.

1.只要不涉及到两个元素之间位置的交换就肯定是稳定的排序算法.比如归并排序,基数排序.(桶排序不稳定是个特例,因为它丢失了附带信息,不然的话可以弄成稳定排序的)

2.在涉及到不同位置元素交换的算法中除了冒泡和直接插入排序是稳定的,其他都是不稳定的.

 

你可以这样想,之所以出现相同元素位置变了就是其中一个交换位置时从另一个头顶跳过去了,而冒泡算法是相邻位置互换,跳不过去的,碰到相等元素的时候就停住不交换了.

直接插入排序是往已排好序的序列中插入.所以你通过由后往前遍历碰到相等的时就停住,这样也能保持稳定.但记住一定得从后往前遍历,不然也会不稳定.(所以说直接插入是半稳吧,而冒泡是非常的稳啊,除非你闲得蛋痛非得把两相等的元素两两交换)


时间复杂度

n^2表示n的平方,选择排序有时叫做直接选择排序或简单选择排序


排序方法 平均时间 最好时间 最坏时间
桶排序(不稳定) O(n) O(n) O(n)
基数排序(稳定) O(n) O(n) O(n)
归并排序(稳定) O(nlogn) O(nlogn) O(nlogn)
速排序(不稳定) O(nlogn) O(nlogn) O(n^2)
堆排序(不稳定) O(nlogn) O(nlogn) O(nlogn)
希尔排序(不稳定) O(n^1.25)    
冒泡排序(稳定) O(n^2) O(n) O(n^2)
选择排序(不稳定) O(n^2) O(n^2) O(n^2)
直接插入排序(稳定) O(n^2) O(n) O(n^2)


http://www.cnblogs.com/pugang/archive/2012/07/02/2573075.html
快速排序 考虑如下极端情况,

 最好情况,每次一分为二都很均匀,此时为log2N;(平均情况下表达式复杂,经证明,也是O(N*logN)数量级的)
 最坏的情况下,待排序的序列为正序或者逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空,即

    T[n] = T[n-1] + T[1] + O(n)

     这一次的划分白玩了,划分之后一边是一个,一边是n-1个,这种极端情况的时间复杂度就是O(n2).

冒泡:最好情况是序列有序,第一遍循环就没有发生交换,则跳出外城循环。
直接插入:外层循环以进行n-1次插入(O(N))),每次插入时,最好的情况时进行一次比较,不进入内存循环,零次交换(正序);最差的情况是进行i次比较,i+2次交换(逆序);
     所以最好是O(N),最差是O(N^2)

O(n)这样的标志叫做渐近时间复杂度,是个近似值.各种渐近时间复杂度由小到大的顺序如下

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

一般时间复杂度到了2^n(指数阶)及更大的时间复杂度,这样的算法我们基本上不会用了,太不实用了.比如递归实现的汉诺塔问题算法就是O(2^n).

平方阶(n^2)的算法是勉强能用,而nlogn及更小的时间复杂度算法那就是非常高效的算法了啊.

 

空间复杂度

冒泡排序,简单选择排序,堆排序(堆是满树,可以用数组来表示。为了节省空间,可以用原数组来的后半部分空间存放排序后的数组,这样就不需额外空间了),直接插入排序,希尔排序的空间复杂度为O(1),因为需要一个临时变量来交换元素位置,(另外遍历序列时自然少不了用一个变量来做索引)

快速排序空间复杂度为logn(因为临时变量在递归调用中定义) ,归并排序空间复杂是O(n),需要一个大小为n的临时数组.

基数排序的空间复杂是O(n),桶排序的空间复杂度不确定

 

 

最快的排序算法是桶排序

所有排序算法中最快的应该是桶排序(很多人误以为是快速排序,实际上不是.不过实际应用中快速排序用的多)但桶排序一般用的不多,因为有几个比较大的缺陷.

1.待排序的元素不能是负数,小数.

2.空间复杂度不确定,要看待排序元素中最大值是多少.

所需要的辅助数组大小即为最大元素的值.



影响排序效果的因素


  因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素:
  ①待排序的记录数目n;
  ②记录的大小(规模);
  ③关键字的结构及其初始状态;
  ④对稳定性的要求;
  ⑤语言工具的条件;
  ⑥存储结构;
  ⑦时间和辅助空间复杂度等。

不同条件下,排序方法的选择

(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
     当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
     快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
     堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。
     若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

1 插入排序(InsertSort)

插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列
如果输入数据预先已经排序,那么运行时间是O(N)(最好情况),因为内存循环首次检测总是失败;
如果输入几乎被排序,那么,插入排序将运行得很快。(希尔排序就是在前面几次排序后,使得数据基本有序,进而最后一次的插入排序可以快速进行)


2 Shell排序(ShellSort)

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素(基本有序了)进行一次插入排序,以减少数据交换和移动的次数,是对直接插入排序的改进。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。常用的一种流行但是不是很好的增量选取方法是:希尔增量:ht=[N/2]和hk=[(hk+1)/2]
Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。

3 堆排序(HeapSort)

堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

5快速排序(QuickSort)

快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。

(1) 如果不多于1个数据,直接返回。
(2) 一般选择序列最左边的值作为支点数据。
(3) 将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4) 对两边利用递归排序数列。

快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 

6 冒泡排序(BubbleSort)

冒泡排序是最慢的排序算法。在实际运用中它是效率最低的算法。它通过一趟又一趟地比较数组中的每一个元素,使较大的数据下沉,较小的数据上升。它是O(n^2)的算法。

7 交换排序(ExchangeSort)和选择排序(SelectSort)

这两种排序方法都是交换方法的排序算法,效率都是 O(n2)。在实际应用中处于和冒泡排序基本相同的地位。它们只是排序算法发展的初级阶段,在实际中使用较少。

8 基数排序(RadixSort)

基数排序和通常的排序算法并不走同样的路线。它是一种比较新颖的算法,但是它只能用于整数的排序,如果我们要把同样的办法运用到浮点数上,我们必须了解浮点数的存储格式,并通过特殊的方式将浮点数映射到整数上,然后再映射回去,这是非常麻烦的事情,因此,它的使用同样也不多。而且,最重要的是,这样算法也需要较多的存储空间。

阅读(1163) | 评论(0) | 转发(0) |
0

上一篇:(int)a and (int&)a

下一篇:android设置背景

给主人留下些什么吧!~~