Chinaunix首页 | 论坛 | 博客
  • 博客访问: 126547
  • 博文数量: 38
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 260
  • 用 户 组: 普通用户
  • 注册时间: 2014-07-30 00:46
文章分类
文章存档

2019年(1)

2018年(6)

2017年(6)

2016年(15)

2015年(10)

我的朋友

分类: Windows平台

2015-11-12 16:57:49

在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。

一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。

  在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。本文我们只介绍API串口通信部分。

  串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。

无论那种操作方式,一般都通过四个步骤来完成:(1) 打开串口(2) 配置串口(3) 读写串口   (4) 关闭串口

(1)  Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:

HANDLE CreateFile( LPCTSTR lpFileName,

DWORD dwDesiredAccess,

DWORD dwShareMode,

LPSECURITY_ATTRIBUTES lpSecurityAttributes,

DWORD dwCreationDistribution,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile);


  • lpFileName:将要打开的串口逻辑名,如“COM1”;
  • dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;
  • dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;
  • lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;
  • dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;
  • dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;
  • hTemplateFile:对串口而言该参数必须置为NULL;


同步I/O方式打开串口的示例代码:

HANDLE hCom; //全局变量,串口句柄

hCom=CreateFile("COM1",//COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

0, //同步方式

NULL);

if(hCom==(HANDLE)-1)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}

return TRUE;

重叠I/O打开串口的示例代码:

HANDLE hCom; //全局变量,串口句柄

hCom =CreateFile("COM1", //COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式

NULL);

if(hCom ==INVALID_HANDLE_VALUE)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}

return TRUE;

(2)、

  在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。

  一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。

  DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:

typedef struct _DCB{

………

//波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:

DWORD BaudRate;

CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400,

CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400

DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查

BYTE ByteSize; // 通信字节位数,4—8

BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:

EVENPARITY 偶校验 NOPARITY 无校验

MARKPARITY 标记校验 ODDPARITY 奇校验

BYTE StopBits; //指定停止位的位数。此成员可以有下列值:

ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位

ONE5STOPBITS 1.5位停止位

………

} DCB;

winbase.h文件中定义了以上用到的常量。如下:

#define NOPARITY 0

#define ODDPARITY 1

#define EVENPARITY 2

#define ONESTOPBIT 0

#define ONE5STOPBITS 1

#define TWOSTOPBITS 2

#define CBR_110 110

#define CBR_300 300

#define CBR_600 600

#define CBR_1200 1200

#define CBR_2400 2400

#define CBR_4800 4800

#define CBR_9600 9600

#define CBR_14400 14400

#define CBR_19200 19200

#define CBR_38400 38400

#define CBR_56000 56000

#define CBR_57600 57600

#define CBR_115200 115200

#define CBR_128000 128000

#define CBR_256000 256000

GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:

BOOL GetCommState(

HANDLE hFile, //标识通讯端口的句柄

LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针

);

SetCommState函数设置COM口的设备控制块:

BOOL SetCommState(

HANDLE hFile,

LPDCB lpDCB

);

  除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm(

HANDLE hFile, // 通信设备的句柄

DWORD dwInQueue, // 输入缓冲区的大小(字节数)

DWORD dwOutQueue // 输出缓冲区的大小(字节数)

);

  在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。

  要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。

  读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。

COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {

DWORD ReadIntervalTimeout; //读间隔超时

DWORD ReadTotalTimeoutMultiplier; //读时间系数

DWORD ReadTotalTimeoutConstant; //读时间常量

DWORD WriteTotalTimeoutMultiplier; // 写时间系数

DWORD WriteTotalTimeoutConstant; //写时间常量

} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是:

总超时=时间系数×要求读/写的字符数+时间常量

例如,要读入10个字符,那么读操作的总超时的计算公式为:

读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant

可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。

如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。

  在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。

配置串口的示例代码:

SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

COMMTIMEOUTS TimeOuts;

//设定读超时

TimeOuts.ReadIntervalTimeout=1000;

TimeOuts.ReadTotalTimeoutMultiplier=500;

TimeOuts.ReadTotalTimeoutConstant=5000;

//设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=500;

TimeOuts.WriteTotalTimeoutConstant=2000;

SetCommTimeouts(hCom,&TimeOuts); //设置超时

DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=TWOSTOPBITS; //两个停止位

SetCommState(hCom,&dcb);

PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm(

HANDLE hFile, //串口句柄

DWORD dwFlags // 需要完成的操作

);

参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT 中断所有写操作并立即返回,即使写操作还没有完成。

PURGE_RXABORT 中断所有读操作并立即返回,即使读操作还没有完成。

PURGE_TXCLEAR 清除输出缓冲区

PURGE_RXCLEAR 清除输入缓冲区

(3)、

我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:

BOOL ReadFile(

HANDLE hFile, //串口的句柄

// 读入的数据存储的地址,

// 即读入的数据将存储在以该指针的值为首地址的一片内存区

LPVOID lpBuffer,

DWORD nNumberOfBytesToRead, // 要读入的数据的字节数

// 指向一个DWORD数值,该数值返回读操作实际读入的字节数

LPDWORD lpNumberOfBytesRead,

// 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。

LPOVERLAPPED lpOverlapped

);

BOOL WriteFile(

HANDLE hFile, //串口的句柄

// 写入的数据存储的地址,

// 即以该指针的值为首地址的nNumberOfBytesToWrite

// 个字节的数据将要写入串口的发送数据缓冲区。

LPCVOID lpBuffer,

DWORD nNumberOfBytesToWrite, //要写入的数据的字节数

// 指向指向一个DWORD数值,该数值返回实际写入的字节数

LPDWORD lpNumberOfBytesWritten,

// 重叠操作时,该参数指向一个OVERLAPPED结构,

// 同步操作时,该参数为NULL。

LPOVERLAPPED lpOverlapped

);

  在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。

  ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了 FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。

  ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。

  如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且 GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。

同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口

char str[100];

DWORD wCount;//读取的字节数

BOOL bReadStat;

bReadStat=ReadFile(hCom,str,100,&wCount,NULL);

if(!bReadStat)

{

AfxMessageBox("读串口失败!");

return FALSE;

}

return TRUE;

//同步写串口

char lpOutBuffer[100];

DWORD dwBytesWrite=100;

COMSTAT ComStat;

DWORD dwErrorFlags;

BOOL bWriteStat;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);

if(!bWriteStat)

{

AfxMessageBox("写串口失败!");

}

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

在重叠操作时,操作还未完成函数就返回。

  重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象 WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用 GetOverlappedResult函数等待,后面将演示说明。

下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:

OVERLAPPED结构

OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED { // o

DWORD Internal;

DWORD InternalHigh;

DWORD Offset;

DWORD OffsetHigh;

HANDLE hEvent;

} OVERLAPPED;

  在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。

  当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。

GetOverlappedResult函数

BOOL GetOverlappedResult(

HANDLE hFile, // 串口的句柄

// 指向重叠操作开始时指定的OVERLAPPED结构

LPOVERLAPPED lpOverlapped,

// 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。

LPDWORD lpNumberOfBytesTransferred,

// 该参数用于指定函数是否一直等到重叠操作结束。

// 如果该参数为TRUE,函数直到操作结束才返回。

// 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,

// 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。

BOOL bWait

);

该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。

异步读串口的示例代码:

char lpInBuffer[1024];

DWORD dwBytesRead=1024;

COMSTAT ComStat;

DWORD dwErrorFlags;

OVERLAPPED m_osRead;

memset(&m_osRead,0,sizeof(OVERLAPPED));

m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

if(!dwBytesRead)

return FALSE;

BOOL bReadStatus;

bReadStatus=ReadFile(hCom,lpInBuffer,

dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE

{

if(GetLastError()==ERROR_IO_PENDING)

//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作

{

WaitForSingleObject(m_osRead.hEvent,2000);

//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟

//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;

}

return 0;

}

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;

  对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:

BOOL ClearCommError(

HANDLE hFile, // 串口句柄

LPDWORD lpErrors, // 指向接收错误码的变量

LPCOMSTAT lpStat // 指向通讯状态缓冲区

);

该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。

参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。 COMSTAT结构 COMSTAT结构包含串口的信息,结构定义如下:

typedef struct _COMSTAT { // cst

DWORD fCtsHold : 1; // Tx waiting for CTS signal

DWORD fDsrHold : 1; // Tx waiting for DSR signal

DWORD fRlsdHold : 1; // Tx waiting for RLSD signal

DWORD fXoffHold : 1; // Tx waiting, XOFF char rec''d

DWORD fXoffSent : 1; // Tx waiting, XOFF char sent

DWORD fEof : 1; // EOF character sent

DWORD fTxim : 1; // character waiting for Tx

DWORD fReserved : 25; // reserved

DWORD cbInQue; // bytes in input buffer

DWORD cbOutQue; // bytes in output buffer

} COMSTAT, *LPCOMSTAT;

本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。

  最后用PurgeComm函数清空串口的输入输出缓冲区。

  这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的异步读串口示例代码:

char lpInBuffer[1024];

DWORD dwBytesRead=1024;

BOOL bReadStatus;

DWORD dwErrorFlags;

COMSTAT ComStat;

OVERLAPPED m_osRead;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

if(!ComStat.cbInQue)

return 0;

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,

&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE

{

if(GetLastError()==ERROR_IO_PENDING)

{

GetOverlappedResult(hCom,

&m_osRead,&dwBytesRead,TRUE);

// GetOverlappedResult函数的最后一个参数设为TRUE,

//函数会一直等待,直到读操作完成或由于错误而返回。

return dwBytesRead;

}

return 0;

}

return dwBytesRead;


阅读(3761) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~