//Find the contiguous subarray within an array (containing at least one number) which has
the largest product.
//
//For example, given the array [2,3,-2,4],
//the contiguous subarray [2,3] has the largest product = 6.
public class MaximumProductSubarray {
public static void main(String[] args) {
// TODO 自动生成的方法存根
}
// 而对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较
小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处
理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的
转移方程式:
//
// max_copy[i] = max_local[i]
// max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])
//
// min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
public int maxProduct(int[] A) {
if(A.length==0){
return 0;
}
int local_min=A[0];
int local_max=A[0];
int global=A[0];
for(int i=1;i
int local_copy=local_max;
local_max=Math.max(Math.max(local_max*A[i],A[i]), local_min*A[i]);
local_min=Math.min(Math.min(local_copy*A[i],A[i]), local_min*A[i]);
global=Math.max(global,local_max);
}
return global;
}
}
阅读(266) | 评论(0) | 转发(0) |