import java.util.Arrays;
//Given an unsorted array, find the maximum difference between the successive elements in
its sorted form.
//
//Try to solve it in linear time/space.
//
//Return 0 if the array contains less than 2 elements.
//
//You may assume all elements in the array are non-negative integers and fit in the 32-bit
signed integer range.
//
//Credits:
//Special thanks to @porker2008 for adding this problem and creating all test cases.
public class maximumGap {
public int maximumGap(int[] num) {
if (num == null || num.length < 2)
return 0;
// get the max and min value of the array
int min = num[0];
int max = num[0];
for (int i:num) {
min = Math.min(min, i);
max = Math.max(max, i);
}
// the minimum possibale gap, ceiling of the integer division
int gap = (int)Math.ceil((double)(max - min)/(num.length - 1));
int[] bucketsMIN = new int[num.length - 1]; // store the min value in that
bucket
int[] bucketsMAX = new int[num.length - 1]; // store the max value in that
bucket
Arrays.fill(bucketsMIN, Integer.MAX_VALUE);
Arrays.fill(bucketsMAX, Integer.MIN_VALUE);
// put numbers into buckets
for (int i:num) {
if (i == min || i == max)
continue;
int idx = (i - min) / gap; // index of the right position in the buckets
bucketsMIN[idx] = Math.min(i, bucketsMIN[idx]);
bucketsMAX[idx] = Math.max(i, bucketsMAX[idx]);
}
// scan the buckets for the max gap
int maxGap = Integer.MIN_VALUE;
int previous = min;
for (int i = 0; i < num.length - 1; i++) {
if (bucketsMIN[i] == Integer.MAX_VALUE && bucketsMAX[i] == Integer.MIN_VALUE)
// empty bucket
continue;
// min value minus the previous value is the current gap
maxGap = Math.max(maxGap, bucketsMIN[i] - previous);
// update previous bucket value
previous = bucketsMAX[i];
}
maxGap = Math.max(maxGap, max - previous); // updata the final max value gap
return maxGap;
}
}
阅读(188) | 评论(0) | 转发(0) |