Chinaunix首页 | 论坛 | 博客
  • 博客访问: 156831
  • 博文数量: 78
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 724
  • 用 户 组: 普通用户
  • 注册时间: 2014-04-04 11:31
文章分类

全部博文(78)

文章存档

2015年(26)

2014年(52)

我的朋友

分类: 服务器与存储

2014-04-10 17:19:05

第一部分:当前HDFS架构详尽分析
 
 
HDFS架构
?NameNode
?DataNode
?Sencondary NameNode
 
数据存储细节

NameNode 目录结构
Namenode 的目录结构:
           ${ dfs.name.dir}/current /VERSION
                                                  /edits
                                                  /fsimage
                                                  /fstime
    dfs.name.dir hdfs-site.xml 里配置的若干个目录组成的列表。
NameNode
             Namenode 上保存着 HDFS 的名字空间。对于任何对文件系统元数据产生修改的操作, Namenode 都会使用一种称为 EditLog 的事务日志记录下来。例如,在 HDFS 中创建一个文件, Namenode 就会在 Editlog 中插入一条记录来表示;同样地,修改文件的副本系数也将往 Editlog 插入一条记录。 Namenode 在本地操作系统的文件系统中存储这个 Editlog 。整个文件系统的名 字空间,包括数据块到文件的映射、文件的属性等,都存储在一个称为 FsImage 的文件中,这 个文件也是放在 Namenode 所在的本地文件系统上。
              Namenode 在内存中保存着整个文件系统的名字空间和文件数据块映射 (Blockmap) 的映像 。这个关键的元数据结构设计得很紧凑,因而一个有 4G 内存的 Namenode 足够支撑大量的文件 和目录。当 Namenode 启动时,它从硬盘中读取 Editlog FsImage ,将所有 Editlog 中的事务作 用在内存中的 FsImage 上,并将这个新版本的 FsImage 从内存中保存到本地磁盘上,然后删除 旧的 Editlog ,因为这个旧的 Editlog 的事务都已经作用在 FsImage 上了。这个过程称为一个检查 (checkpoint) 。在当前实现中,检查点只发生在 Namenode 启动时,在不久的将来将实现支持 周期性的检查点。
 
 
HDFS NameSpace
            HDFS 支持传统的层次型文件组织结构。用户或者应用程序可以创建目 录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数 现有的文件系统类似:用户可以创建、删除、移动或重命名文件。当前, HDFS 不支持用户磁盘配额和访问权限控制,也不支持硬链接和软链接。但 HDFS 架构并不妨碍实现这些特性。
             Namenode 负责维护文件系统命名空间,任何对文件系统名字空间或属 性的修改都将被 Namenode 记录下来。应用程序可以设置 HDFS 保存的文件 的副本数目。文件副本的数目称为文件的副本系数,这个信息也是由 Namenode 保存的。

DataNode
               Datanode HDFS 数据以文件的形式存储在本地的文件系统中,它并不知道有 HDFS 文件的信息。它把每个 HDFS 数据块存储在本地文件系统的一个单独的文件 中。 Datanode 并不在同一个目录创建所有的文件,实际上,它用试探的方法来确定 每个目录的最佳文件数目,并且在适当的时候创建子目录。在同一个目录中创建所 有的本地文件并不是最优的选择,这是因为本地文件系统可能无法高效地在单个目 录中支持大量的文件。
            当一个 Datanode 启动时,它会扫描本地文件系统,产生一个这些本地文件对应 的所有 HDFS 数据块的列表,然后作为报告发送到 Namenode ,这个报告就是块状态 报告。
Secondary NameNode      
        Secondary NameNode 定期合并 fsimage edits 日志,将 edits 日志文件大小控制在一个限度下。

配置Secondary NameNode
? conf/masters文件指定的为Secondary NameNode节点
?修改在masters文件中配置了的机器上的conf/hdfs-site.xml文件,加上如下选项:
       dfs.http.address namenode.hadoop-host.com:50070
 
?core-site.xml:这里有2个参数可配置,但一般来说我们不做修改。fs.checkpoint.period表示多长时间记录一次hdfs 的镜像。默认是1小时。fs.checkpoint.size表示一次记录多大的size,默认64M。
      fs.checkpoint.period 3600 The number of seconds between two periodic checkpoints.
        fs.checkpoint.size 67108864 The size of the current edit log (in bytes) that triggers a periodic checkpoint even if the fs.checkpoint.period hasn't expired.
Secondary NameNode
 
 
 
Secondary NameNode处理流程
   (1) namenode 响应 Secondary namenode 请求,将 edit log 推送给 Secondary namenode 开始重新写一个新的 edit log
    (2) Secondary namenode 收到来自 namenode fsimage 文件和 edit log
    (3) Secondary namenode fsimage 加载到内存,应用 edit log 并生成一 个新的 fsimage 文件。
    (4) Secondary namenode 将新的 fsimage 推送给 Namenode
     (5) Namenode 用新的 fsimage 取代旧的 fsimage fstime 文件中记下检查 点发生的时
HDFS通信协议
            所有的 HDFS 通讯协议都是构建在 TCP/IP 协议上。客户端通过一个可 配置的端口连接到 Namenode 通过 ClientProtocol Namenode 交互。而 Datanode 是使用 DatanodeProtocol Namenode 交互。再设计上, DataNode 通过周期性的向 NameNode 发送心跳和数据块来保持和 NameNode 的通信,数据块报告的信息包括数据块的属性,即数据块属于哪 个文件,数据块 ID ,修改时间等, NameNode DataNode 和数据块的映射 关系就是通过系统启动时 DataNode 的数据块报告建立的。从 ClientProtocol Datanodeprotocol 抽象出一个远程调用 ( RPC ), 在设计上, Namenode 不会主动发起 RPC 而是是响应来自客户端和 Datanode RPC 请求。
HDFS的安全模式
           Namenode 启动后会进入一个称为安全模式的特殊状态。处于安全模式 Namenode 是不会进行数据块的复制的。 Namenode 从所有的 Datanode 接收心跳信号和块状态报告。块状态报告包括了某个 Datanode 所有的数据 块列表。每个数据块都有一个指定的最小副本数。当 Namenode 检测确认某 个数据块的副本数目达到这个最小值,那么该数据块就会被认为是副本安全 (safely replicated) 的;在一定百分比(这个参数可配置)的数据块被 Namenode 检测确认是安全之后(加上一个额外的 30 秒等待时间), Namenode 将退出安全模式状态。接下来它会确定还有哪些数据块的副本没 有达到指定数目,并将这些数据块复制到其他 Datanode 上。
 
 
 
第二部分:HDFS文件读取的解析
文件读取流程
 
 
流程分析
?使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
? Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会返回有该block拷贝的DataNode地址;
?客户端开发库Client会选取离客户端最接近的DataNode来读取block;如果客户端本身就是DataNode,那么将从本地直接获取数据.
?读取完当前block的数据后,关闭与当前的DataNode连接,并为读取下一个block寻找最佳的DataNode;
?当读完列表的block后,且文件读取还没有结束,客户端开发库会继续向Namenode获取下一批的block列表。
?读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通知Namenode,然后再从下一个拥有该block拷贝的datanode继续读。
 
 
 
第三部分:HDFS文件写入的解析
文件写入流程
 
流程分析
?使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
?Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会为文件 创建一个记录,否则会让客户端抛出异常;
?当客户端开始写入文件的时候,会将文件切分成多个packets,并在内部以数据队列"data queue"的形式管理这些packets,并向Namenode申请新的blocks,获取用来存储replicas的合适的datanodes列表, 列表的大小根据在Namenode中对replication的设置而定。
?开始以pipeline(管道)的形式将packet写入所有的replicas中。把packet以流的方式写入第一个datanode,该 datanode把该packet存储之后,再将其传递给在此pipeline中的下一个datanode,直到最后一个datanode,这种写数据的 方式呈流水线的形式。
?最后一个datanode成功存储之后会返回一个ack packet,在pipeline里传递至客户端,在客户端的开发库内部维护着"ack queue",成功收到datanode返回的ack packet后会从"ack queue"移除相应的packet。
?如果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移 除,剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持 replicas设定的数量。
 
 
流水线复制
               当客户端向 HDFS 文件写入数据的时候,一开始是写到本地临时文件中。假设该文件的副 本系数设置为 3 ,当本地临时文件累积到一个数据块的大小时,客户端会从 Namenode 获取一个 Datanode 列表用于存放副本。然后客户端开始向第一个 Datanode 传输数据,第一个 Datanode 一小部分一小部分 (4 KB) 地接收数据,将每一部分写入本地仓库,并同时传输该部分到列表中 第二个 Datanode 节点。第二个 Datanode 也是这样,一小部分一小部分地接收数据,写入本地 仓库,并同时传给第三个 Datanode 。最后,第三个 Datanode 接收数据并存储在本地。因此, Datanode 能流水线式地从前一个节点接收数据,并在同时转发给下一个节点,数据以流水线的 方式从前一个 Datanode 复制到下一个
 
 
更细节的原理
           客户端创建文件的请求其实并没有立即发送给 Namenode ,事实上,在刚开始阶 HDFS 客户端会先将文件数据缓存到本地的一个临时文件。应用程序的写操作被透 明地重定向到这个临时文件。当这个临时文件累积的数据量超过一个数据块的大小 ,客户端才会联系 Namenode Namenode 将文件名插入文件系统的层次结构中,并 且分配一个数据块给它。然后返回 Datanode 的标识符和目标数据块给客户端。接着 客户端将这块数据从本地临时文件上传到指定的 Datanode 上。当文件关闭时,在临 时文件中剩余的没有上传的数据也会传输到指定的 Datanode 上。然后客户端告诉 Namenode 文件已经关闭。此时 Namenode 才将文件创建操作提交到日志里进行存储 。如果 Namenode 在文件关闭前宕机了,则该文件将丢失。
 
第四部分:副本机制
特点
1. 数据类型单一
2. 副本数比较多
3. 写文件时副本的放置方法
4. 动态的副本创建策略
5. 弱化的副本一致性要求
 
副本摆放策略
 
 
 
修改副本数
1.集群只有三个Datanode,hadoop系统replication=4时,会出现什么情况?
        对于上传文件到hdfs上时,当时hadoop的副本系数是几,这个文件的块数副本数就会有几份,无论以后你怎么更改系统副本系统,这个文件的副本数都不 会改变,也就说上传到分布式系统上的文件副本数由当时的系统副本数决定,不会受replication的更改而变化,除非用命令来更改文件的副本数。因为 dfs.replication实质上是client参数,在create文件时可以指定具体replication,属性 dfs.replication是不指定具体replication时的采用默认备份数。文件上传后,备份数已定,修改dfs.replication是 不会影响以前的文件的,也不会影响后面指定备份数的文件。只影响后面采用默认备份数的文件。但可以利用hadoop提供的命令后期改某文件的备份 数:hadoop fs -setrep -R 1。如果你是在hdfs-site.xml设置了dfs.replication,这并一定就得了,因为你可能没把conf文件夹加入到你的 project的classpath里,你的程序运行时取的dfs.replication可能是hdfs-default.xml里的 dfs.replication,默认是3。可能这个就是造成你为什么dfs.replication老是3的原因。你可以试试在创建文件时,显式设定 replication。replication一般到3就可以了,大了意义也不大。
阅读(1618) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~