一万年太久,只争朝夕
分类: 高性能计算
2016-01-15 18:51:43
作者:毛曙源 链接: 来源:知乎 SLAM涵盖的东西比较多,分为前端和后端两大块。前端主要是研究相邻帧的拼接,又叫配准。根据传感器不一样,有激光点云、图像、RGB-D拼接几种,其中图像配准中又分基于稀疏特征(Sparse)的和稠密(Dense)的两种。后端主要是研究地图拼接(前端)中累积误差的校正,主流就两种,基于概率学理论的贝叶斯滤波器(EKF,PF)以及基于优化的方法。EKF已经用得很少了,PF也就在2D地图SLAM(Gmapping)中用得多,大多还是用优化的方法在做。 你自己已经说了这块需要的知识,一个是数学,一个是编程。所以入门的话,也从这两块开始弄。 一、数学方面 数学的话,建议楼上说过的Thrun的《probabilistic robotics》,其实不需要全部看完,了解下概率学是如何解决机器人中的问题的,关键学习贝叶斯滤波,也是就是贝叶斯公式在各个问题(定位,SLAM)中的应用。另外,优化的话,建议先把最小二乘优化中给弄透彻,数学推导要会,因为很多问题,最后都是归结到最小二乘优化,然后就是梯度下降、求Jacobian之类的。 二、编程方面 理论的东西是比较无聊的,必须得实战。建议入门先写一发最小二乘优化,可以就做一个简单的直线拟合,不要用Matlab中的优化工具,了解数学推导最后是怎么写到代码里面的。然后,一定要玩好Matlab优化工具包,做实验最方便了。 有了一些基础之后,可以尝试玩一些现有的SLAM包,推荐两个地方,一个是www.openslam.org,里面有各种SLAM包,主流的SLAM算法,在这一般都有源码。另外一个就是ROS了,里面有很多现成的SLAM包,像Gmapping,RGB-D SLAM,上手非常快,甚至你没有任何设备,你也可以利用ROS中的仿真环境(如Gazebo)跑。建议先试试Gmapping,百度上有很多中文教程,一开始跑这些package还是很涨成就感的,可以提高你的兴趣。 如果你是做视觉或者RGB-D,那么OpenCV和PCL是必不可少的工具。早点上手肯定没得错。 三、进阶 大体入门之后,你就需要根据你实验室研究的项目来学习了,看是用激光、相机、还是Kinect来做了,不同传感器的前端算法还是有些差距的。激光的话一般是ICP,相对简单。视觉的东西还是比较多的,楼上推荐《Multiview Geometry in Computer Vision》确实很重要,不过,我觉得这同时你还应该了解特征提取、特征描述子、特征匹配这些东西。如果你们实验室做的Dense registration,那你还得学李代数那些东西(高大上啊,神马李群看好多天都看不懂啊!!!)。其实,很多算法都有开源包,你可以去ROS、一些大神博客、牛逼实验室主页中多逛逛。 四、学渣只能帮你到这了,再后面就不会了,再往后就得找真大神了。
|