Chinaunix首页 | 论坛 | 博客
  • 博客访问: 58254
  • 博文数量: 15
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 206
  • 用 户 组: 普通用户
  • 注册时间: 2013-10-23 13:47
文章分类

全部博文(15)

文章存档

2013年(15)

我的朋友

分类: HADOOP

2013-11-05 08:39:29

    选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。 
    以关联计算为例。 
    假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中? 
    一般方法是:输入2个源文件。根据文件名在Map中处理每条数据,如果是Order,则在foreign key上加标记”O”,形成combined key;如果是Customer则做标记”C”。Map之后的数据按照key分区,再按照combined key分组排序。最后在reduce中合并结果再输出。 
实现代码: 
public static class JMapper extends Mapper
    //mark every row with "O" or "C" according to file name 
    @Override 
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { 
    String pathName = ((FileSplit) context.getInputSplit()).getPath().toString(); 
    if (pathName.contains("order.txt")) {//identify order by file name 
            String values[] = value.toString().split("\t"); 
            TextPair tp = new TextPair(new Text(values[1]), new Text("O"));//mark with "O" 
            context.write(tp, new Text(values[0] + "\t" + values[2])); 
        } 
   if (pathName.contains("customer.txt")) {//identify customer by file name 
           String values[] = value.toString().split("\t"); 
           TextPair tp = new TextPair(new Text(values[0]), new Text("C"));//mark with "C" 
           context.write(tp, new Text(values[1])); 
        } 
    } 

public static class JPartitioner extends Partitioner
    //partition by key, i.e. customerID 
    @Override 
    public int getPartition(TextPair key, Text value, int numParititon) { 
        return Math.abs(key.getFirst().hashCode() * 127) % numParititon; 
    } 

public static class JComparator extends WritableComparator { 
    //group by muti-key 
    public JComparator() { 
        super(TextPair.class, true); 
    } 
    @SuppressWarnings("unchecked") 
    public int compare(WritableComparable a, WritableComparable b) { 
        TextPair t1 = (TextPair) a; 
        TextPair t2 = (TextPair) b; 
        return t1.getFirst().compareTo(t2.getFirst()); 
    } 

public static class JReduce extends Reducer
    //merge and output 
    protected void reduce(TextPair key, Iterable values, Context context) throws IOException,InterruptedException { 
    Text pid = key.getFirst(); 
    String desc = values.iterator().next().toString(); 
    while (values.iterator().hasNext()) { 
        context.write(pid, new Text(values.iterator().next().toString() + "\t" + desc)); 
   } 
    } 

public class TextPair implements WritableComparable
    //make muti-key 
    private Text first; 
    private Text second; 
    public TextPair() { 
        set(new Text(), new Text()); 
    } 
    public TextPair(String first, String second) { 
        set(new Text(first), new Text(second)); 
    } 
    public TextPair(Text first, Text second) { 
        set(first, second); 
    } 
    public void set(Text first, Text second) { 
  this.first = first; 
  this.second = second; 
    } 
    public Text getFirst() { 
  return first; 
    } 
    public Text getSecond() { 
  return second; 
    } 
    public void write(DataOutput out) throws IOException { 
  first.write(out); 
  second.write(out); 
    } 
    public void readFields(DataInput in) throws IOException { 
  first.readFields(in); 
  second.readFields(in); 
    } 
    public int compareTo(TextPair tp) { 
  int cmp = first.compareTo(tp.first); 
  if (cmp != 0) { 
       return cmp; 
  } 
    return second.compareTo(tp.second); 
    } 

public static void main(String agrs[]) throws IOException, InterruptedException, ClassNotFoundException { 
    //job entrance 
    Configuration conf = new Configuration(); 
    GenericOptionsParser parser = new GenericOptionsParser(conf, agrs); 
    String[] otherArgs = parser.getRemainingArgs(); 
    if (agrs.length < 3) { 
   System.err.println("Usage: J "); 
   System.exit(2); 
    } 
    Job job = new Job(conf, "J"); 
    job.setJarByClass(J.class);//Join class 
    job.setMapperClass(JMapper.class);//Map class 
    job.setMapOutputKeyClass(TextPair.class);//Map output key class 
    job.setMapOutputValueClass(Text.class);//Map output value class 
    job.setPartitionerClass(JPartitioner.class);//partition class 
    job.setGroupingComparatorClass(JComparator.class);//condition group class after partition 
    job.setReducerClass(Example_Join_01_Reduce.class);//reduce class 
    job.setOutputKeyClass(Text.class);//reduce output key class 
    job.setOutputValueClass(Text.class);//reduce ouput value class 
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//one of source files 
    FileInputFormat.addInputPath(job, new Path(otherArgs[1]));//another file 
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));//output path 
    System.exit(job.waitForCompletion(true) ? 0 : 1);//run untill job ends 


    不能直接使用原始数据,而是要搞一堆代码处理标记,并绕过MapReduce原本的架构,最后从底层设计并计算数据之间的关联关系。这还是最简单的关联计算,如果用MapReduce进行多表关联或逻辑更复杂的关联计算,复杂度会呈几何级数递增。 


转自:意外搜到另一篇相同主题的文章,不知道是否软文,开卷有益吧:http://blog.sina.com.cn/s/blog_e4de31d00101efat.html

阅读(816) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~