2. Arm体系架构中进程切换过程 在之后的文章里,可能会有很大部分的篇幅是介绍内核如何调度和管理进程。学习了解这部分内容,很多时候是和task struct,run queue,schedule entity等数据结构打交道。关于linux进程调度的文章网上已经有很多,大多数都比较详细的介绍调度算法。调度算法的内容说白了就是在什么时间,内核会用什么样的进程替换目前正在运行的进程。而最后进程间的切换是如何完成的,介绍的文章较少。在此,我们在修炼高深内功之前,必须了解一下这个内功中的内功,打通一下任通二脉。下面介绍一下进程切换的过程。
/* * context_switch - switch to the new MM and the new * thread's register state. */ static inline void context_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { struct mm_struct *mm, *oldmm; prepare_task_switch(rq, prev, next); trace_sched_switch(rq, prev, next); mm = next->mm; oldmm = prev->active_mm; /* * For paravirt, this is coupled with an exit in switch_to to * combine the page table reload and the switch backend into * one hypercall. */ arch_enter_lazy_cpu_mode(); if (unlikely(!mm)) { next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next); } else switch_mm(oldmm, mm, next); if (unlikely(!prev->mm)) { prev->active_mm = NULL; rq->prev_mm = oldmm; } /* * Since the runqueue lock will be released by the next * task (which is an invalid locking op but in the case * of the scheduler it's an obvious special-case), so we * do an early lockdep release here: */ #ifndef __ARCH_WANT_UNLOCKED_CTXSW spin_release(&rq->lock.dep_map, 1, _THIS_IP_); #endif /* Here we just switch the register state and the stack. */ switch_to(prev, next, prev); barrier(); /* * this_rq must be evaluated again because prev may have moved * CPUs since it called schedule(), thus the 'rq' on its stack * frame will be invalid. */ finish_task_switch(this_rq(), prev); } |
context_switch函数就是在进程调度过程中完成进程切换的函数,prev是被切换掉的进程,而next是切换到的进程。
代码首先判断切换掉的进程有没有用户空间,如果mm为空,表示next指向的进程是一个内核线程,根本就没有用户空间。这个时候,next进程根本就不会去访问用户空间的地址,因此,不需要更换MMU的页目录表。enter_lazy_tlb函数对于ARM架构就是一个空实现。如果next是个普通的用户进程,就执行switch_mm执行更换MMU的页目录表。
下面代码就是更换MMU页目录表的过程,其实很简单,就是操作设置新的页目录表的基地址到cp15协处理中。每个进程的页目录表基地址保存在mm_struct中的pgd中。
/* * cpu_arm920_switch_mm(pgd) * * Set the translation base pointer to be as described by pgd. * * pgd: new page tables */ .align 5 ENTRY(cpu_arm920_switch_mm) #ifdef CONFIG_MMU mov ip, #0 #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache #else @ && 'Clean & Invalidate whole DCache' @ && Re-written to use Index Ops. @ && Uses registers r1, r3 and ip mov r1, #(CACHE_DSEGMENTS - 1) << 5 @ 8 segments 1: orr r3, r1, #(CACHE_DENTRIES - 1) << 26 @ 64 entries 2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index subs r3, r3, #1 << 26 bcs 2b @ entries 63 to 0 subs r1, r1, #1 << 5 bcs 1b @ segments 7 to 0 #endif mcr p15, 0, ip, c7, c5, 0 @ invalidate I cache mcr p15, 0, ip, c7, c10, 4 @ drain WB mcr p15, 0, r0, c2, c0, 0 @ load page table pointer mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs #endif mov pc, lr |
完成了页目录表的替换,再次回到context_switch函数中来,最后要完成进程切换,即切换到next进程的执行流程上去。
这个切换过程也比较简单,首先保存当前cpu现场,然后设置了一下cp15协处理器的domain寄存器,之后恢复next进程的cpu现场。切换到了next进程。
/*
* switch_to(prev, next) should switch from task `prev' to `next'
* `prev' will never be the same as `next'. schedule() itself
* contains the memory barrier to tell GCC not to cache `current'.
*/
extern struct task_struct *__switch_to(struct task_struct *, struct thread_info *, struct thread_info *);
#define switch_to(prev,next,last) \
do { \
last = __switch_to(prev,task_thread_info(prev), task_thread_info(next)); \
} while (0)
ENTRY(__switch_to)
add ip, r1, #TI_CPU_SAVE
ldr r3, [r2, #TI_TP_VALUE]
stmia ip!, {r4 - sl, fp, sp, lr} @ Store most regs on stack
#ifdef CONFIG_MMU
ldr r6, [r2, #TI_CPU_DOMAIN]
#endif
#ifdef CONFIG_MMU
mcr p15, 0, r6, c3, c0, 0 @ Set domain register
#endif
mov r5, r0
add r4, r2, #TI_CPU_SAVE
ldr r0, =thread_notify_head
mov r1, #THREAD_NOTIFY_SWITCH
bl atomic_notifier_call_chain
mov r0, r5
ldmia r4, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
ENDPROC(__switch_to)
阅读(2717) | 评论(0) | 转发(1) |