全部博文(55)
2012年(55)
分类: LINUX
2012-03-28 16:41:46
Gstreamer说明
一 Gstreamer简介
是一个框架,灵活轻便。
第一部分基本没有难度,只要能 看懂英文。从我目前接触的感觉上看,Gstreamer确实简化了动态库的加 载,模块与模块间的合作。
但是Gstreamer用得还是有点不太习惯,可能是 GLIB这种风格没有适 应。
gstreamer整个分为:
l core: 核心库
l 基础插件:一些很基础的插件
l 好插件:编写质量较好的遵循LGPL协议的插件
l 坏插件:有待改进的插件
l 其他库
1.1 核心库核心库是不了解任何媒体信息的,它只是一个框架,将所有单元联系起来。
单元是gstreamer里的核心概念。
二 基础知识
2.1 单元Element是构成管道的组件,每个element实际就是一个插件,在gst中得到组装成一个pipe,数据从源单元流向目的单元,完 成整个流程。单元间是可以链接起来的(必须得链接起来以组成pipe)。
2.2 Padpad是一个单元的输入输出端口,通过pad,才能将两个单元链接 到一起。对输入来说,pad就是一个插口,对输出来说pad就是一个塞子。pad有自己的规格,所以不同规格的pad就限制了数据的规格。只有规格相符的pad才能链接到一 起。
l 规格协商的过程叫caps negotiation
l 数据类型叫GstCaps
2.3 盒子和管道盒子Bin是一组单元的集合,而管道Pipeline是一种特殊的盒 子,在管道中,所有单元可以一体执行某些。
在实现的时候,Bin也是一种单元,操纵Bin就可以改变内部所有单元的属性, 而且Bin还能传递内部单元的信号事件。这样就简化了外界使用的难度。
管道是一个顶层的bin,可以设置状态为PAUSED或者PLAYING。内部会启动一个独立线程来干活。
三 GST构 建
3.1 初始化GST库必须先初始化,调用gst_init。
3.2 单元elementsGstElement是最重要的对象。一些高级对象也是从它派生出来的。有好几种类型的elements,必须分清楚了。
1. 源单元
source单元是数据的产生方,对应一个源pad。一般画在右边。
l 源单元只能生产数据,不能接收数据
2. 中间单元
中间单元包括过滤器,转换器,复用器,解复用器,编解码器等。
它有多个源pad,对应多个目标pad。
3. 目标单元
只能接受数据。
4. 创建和使用单元
通过factory_make和gst_object_unref来创建及释放单元。make需要两个参数,一个是工厂名,一个是单元名。工厂名实际就是插件名,所以需要先加载插件上来,才能创建对应的单元。
单元继承所有Gobject的属性,所以可以当做Gobject来处理。
单元有属性,单元还能触发信号,所以必须关注这些。
作为工厂,其功能还不仅限于创建单元,一个工厂有属性,它知道自己能创建怎样的单元。
其实就是这个插件知道自己能创建怎样的单 元。可能需要看了插件编写才真正知道。
5. 链接单元
单元必须链接起来,才能协同工作。
源单元-à中间 单元--à目标单元
l 必须先加到管道后才能link起来。
l 不在同一bin中的不能link
6. 单元状态
单元链接好后,啥事也不会发生,除非设置单元状态。单元一共有四种状态:
l GST_STATE_NULL:默认状态,内部会释放单元的所有资源,其实就是初始状态。
l XXX_READY:就绪状态,分配资源,打开设备。但是流不会打开,所以此时流信息都是零。如果之前打开了流,在这状态中将会被关闭,流信息都会被重 设。
l XXX_PAUSED:已经打开了流,但是暂时不处理它。这个时候可以去修改例如seek位置等流信息。时间轴停止
l XXX_PLAYING:时间轴运行。设置为这个状态后,整个流程就开始启动了。内部会将消息发送从管道所在的线程转移到应用程序线程。(?)
通过set_state函数设置状态,GST会平滑设置,例如从PLAY设置为NULL,将平滑设置READY和PAUSED。
3.4 BinsBin不仅是一个单元的集合,更是集成了对内部单元的管理。管道是一种特殊的bin,实际要播放一个视音频就得用到管道。管道能独立在后台运行。
1. 创建Bin
Bin从element派生而来,所以创建单元的函数均可创建Bin,但一般用两个更方便的函数:
l gst_bin_new
l gst_pipeline_new
Bin是一个集合,需要将单元加入进去,也可以删除。
l gst_bin_add,gst_bin_remove
注意,一旦加入到Bin,单元的所有者就变为Bin了,所以删除Bin的话,内部的单元也会相应减少引用。
2. 定制化Bin
还是得看插件编程指南才能真正理解。
3.5 Bus1. 总论
Bus的好处是可以把pipeline所在的线程的消息路由到应用 程序指定的那个Context中去。
是全局那个线程吗?待会查看下源码。定期 检查bus?设计还是比较巧妙的。
bus上要加入监控回调函数。通过
l gst_bus_add_watch/gst_bus_add_signal_watch
l 要从bus中取消息,得调用gst_bus_pop/peek/pop
注意,Bus发出的消息是GstMessage结构,值得解释。
Bus含一个 队列,每次post一个消息就加到队列里,然后出发maincontext的wakeup。 这样就完成了将消息路由到maincontext去了。因为maincontext等待的有这个bus队 列。
这里边绕啊绕的..想 法还是很直观。
有没有办法不用默认context呢?有一个函数将message转换为signal去emit:
l gst_bus_async_signal_func:
这里要区分下message和signal。signal是Gobject系统提供的,message是GST提供的。message的处理是异步的,而signal的处理是同步的。
如果你不想写很多switch来区别message的话,那么另外一种办法就是注册对应 的signal到系统。另外,如果不使用mainloop的话,异步消息-信号不会发出去。
bus的消息分为异步和同步两类。
l 异步信号是通过加入到mainloop中的Gsource来触发的,所以必须有mainloop再运行才可
l 同步信号必须先注册一个同步信号处理函数才可。
需要自己设置一个同步信号处理 函数,在那里触发另外一个context,并且调用上面这个函数发送signal。
2. message类型
描述一个message有以下:
l Message的来源:记录是从哪个单元发出来的
l 类型:
l 时间戳
比较重要的是类型信息:有以下几类类型
l error,warning,info等信息:需要调用对应API进行解析
l EOS: 文件结尾,需要重设管道状态等
l Tag: 标签信息(其实就是媒体信息,比如长度,采样率等)
l State变化:
l 缓存信息:调用gst_bus_get_structure来解析缓存信息
l 单元信息:某些单元会发送特殊的信息
l 应用程序自己的信息
3.6 Pads和属性
Pads很关键,代表了单元的出入口。标示Pads特性的有两个:
l 方向,从单元内角度看,sink收数据,source发数据
l 可用性(availability)
方向好说,只有sink和source两种,可用性是一个新概念。主要代表这个pad是存活期的。
分三种:
l pad一 直存在
l 动态存在:有时候有,有时候没有,动态创建和删除
l 响应存在:根据外界要求来创建
这个可用性是针对媒体文件类型 的一种简化表示。下面针对这个具体讲述,pad的可用性非常重要。
1. 动态pad
为何会有动态之说?原因很简 单。例如播放音频的时候,要动态检测有几路音频,然后再创建对应的pad。
程序里边应该绑定一个消息处理 函数到动态pad的创建通知上。
2. 响应pad
响应用户要求而创建的pad。必须从一个支持创建这种类型的单元中去创建,调用
l gst_element_get_request_pad
这个element必须支持Request这种,这个熟悉由插件注册的时候指 定的。
还有一种就是查找相容的pad
l get_element_get_compatible_pad,根据源pad和caps来从单元中找一个相容的。
3. Pad的属性
刚才提到过,查找相容的pad,那么相容是怎么判断和体现的呢?pad有自己的能力熟悉 (Capabilities)
pad的能力熟悉是和pad模板以及pad绑定一起的。pad模板估计就是一个pad工厂。
一个pad有很多不同的能力,这个是最原始的信息。但是具体工作后,一个pad要和别的pad协商,大家按照规定的能力办事。这样,pad的能力就是协商后的能力了。
能力在GST中用GstCaps来表示。
GstCaps含一到多个Gstructure,一个Gstructure代表一种pad能处理的媒体类型。
4. GST中属性和值的 表示
GST除了使用GLIB中的数据类型外,还单独定义了一些数据类 型,用来表示属性值。
值得注意的有:
l GST_TYPE_INT_RANGE:范围值
l GST_TYPE_LIST:包含任何基本类型都可以
l GST_TYPE_ARRAY:只能包含相同的类型
5. Caps的用处
Caps实际的用处很多,其实就是一个寻找匹配pad或element之用。
Caps中有一项描述媒体信息的,叫metadata。如何从caps中获取条目呢?
caps中存 的是structure条目,一个structure代表一种能力
gst_caps_get_structure/size
根据条目多少和属性,caps可分为:
l 简单caps:只含一条structure
l 固定caps:含一条structure,并且属性值没有range之类可变化的
l 任意caps和空caps是两种特殊cap
6. 创建过滤器使用的caps
刚才讲的全是从单元中获取caps,都是已经弄好了的。那么如果想动态创建caps该如何做 呢?
l gst_caps_new_simple:创建simple的
l xx_full:创建n个structure的caps
这还只是创建pad,要把src和dst通过过滤单元链接起来,用
gst_element_link_filtered,内部会根据过滤pad自动创建一个capsfilter。
所以关闭链接的时候,需要把src和dst分 别从capsfilter中关闭链接。而非简单的关闭源和目标
7. 幽灵pad
有啥用?其实就是创建一个代理pad吧。
为啥要有个这个东西?因为bin本身是没有pad的。所以你就没办法把两个bin链接起来。
这个时候,可以用bin中的一个单元的pad构造一个代理pad,这样bin就有一个代理pad了。这个pad实际指向被代理的那个单元的pad。
3.7 缓冲与事件
数据流动是以缓冲传递来实际工 作的,所以buffer比较在重要。
events和message不太一样,这个events实际就是命令,而且在管道中流动。这么说的话,buffer对 应的就是数据。
从命名习惯上来说,buffer更 应该看成是一种容器,里边含data和events。
1. Buffer
GstBuffer有以下成员:
l 数据内存指针
l 缓冲大小
l 时间戳
l 用者计数(与引用计数对应)
l 标识
2. Events
事件是一种控制数据,能够在管道中上下流动。
一般来说,上游的控制命令可能是真的在控 制什么,来自下游的events可能大多数是些状态通知之类的。?原文是这么说的。
应用程序自己能发送控制?例如seek命令。
恩,确实应该有地方可以发送控制命令。典 型的就是seek。用户也需要一个地方能做这个工作。
看来都是通过events方 式来做到控制的。
l gst_events_new_xxx
l gst_element_send_event
先创建一个命令,然后发出去….
四 基本例子
这部分对应第10章,不打算介绍了。做到能看懂代码为准。
或者自己可以想想该怎么写一个 这样的例子,能解释清楚里边的API调用次序和关系等。
看明白了,看来要使用一个gst还 是相对比较容易的。但是要开发一个插件,可能难度就大很多了。尤其是里边的Buffer,事件之类的东西。争取2周 搞定。
五 高级部分
5.1 查询与Seek查询主要是获得进度信息(播放电影的时候那个进度条位置)。
seek与查询类似,seek的完成通过event方式来发送控制命令。
1. GST中的查询
GST为查询提供了丰富的接口,例如当前时间戳,当前读取帧数等信息,都可以查询到。
questions:在 哪儿查?查哪个单元,怎么查?
Answer: 估计是查pipe。调用gst_element_query
内部处理是先将该query发到sink单元,然后向上找看哪个单元能够处理,处理完 了再把结果返回给调用程序。一般demuxer能够处理。
2. Seek
处理逻辑与查询类似。针对seek请求,单独可以构造一个gst_event_new_seek出来。
一个seek请求包含很多参数,这里不详述了。
有几个可以猜想到:seek的 位置,seek多少等。
有一个标识关于是否刷新内部buffer的似乎很重要。
当处于PAUSED和PLAYING状态的时候,需要这个FLUSH标示。因为seek完了后,会回到以前的状态。
你可以等待seek真正完成,用:
l gst_element_get_state
l 或者等到ASYNC_DONE消息
另外,只能在PLAYING状态下设置无FLUSH标示。seek命令的完成可能是在另外一个线程来做的。内部处理逻辑如下:
l 先pause,如果开始是playing状态的话,位置信息将被重置
l 中间单元将重新位置处开始处理,直 到sink单元收到数据,如果之前是play状态,则seek完成后也是play状态
5.2 元数据信息
MetaData应该是描述媒体文件信息之用的。gst将MD分为两类:
l 标签信息(除媒体视音频格式之外的 其他信息,例如属于哪个专辑,什么流派之类的),这类信息由GstTag系统完 成
l 视音频格式信息,这个由pad完成
1. Tag信息读取
这个是通过管道的bus来读取的。可以监听GST_MESSAGE_TAG来完 成。
2. Tag写入
使用GstTagSetter来完成,而且该单元必须支持tag设置。
奇怪,怎么设置?源一般按普通文件打开 的,没法设置啊。
所以必须先从管道中找到那些能设置的。通过:
l gst_bin_iterate_all_by_interface(GST_TYPE_TAG_SETTER),
l 然后调用gst_tag_setter_add等函数。
看了下manual,Tagsetter是 一个接口,必须有类实现这个接口就可以了。
接口类定义了一个实现单元应该支持的功能。
1. URI接口
其实就是定义一个支持通用路径的接口。
例如本地文件用,网页文件用
怎么获得一个支持特定URI地址的单元呢?
l gst_element_make_from_uri,可以指定SRC或DST
创建一个支持特定URI地址的单元。
2. MIXER接口
支持对硬件或软件音量的统一管理。一般那些直接和声卡硬件打交道的单元用实现这个接口。
有哪些功能呢?比如静音,调整左右声道等功能。
一般不要在播放中使用这种接口 来控制音量,相反,应该使用sink单元的音量属性来控制。
也是啊,一般控制本地程序即可,不用去调 节全局声卡的音量呀。
3. Tuner接口
用于调整多输入输出设备的,可能还是和硬件关系比较紧密。
4. 色彩平衡接口
用来调节亮度,对比度等内容的。
5. 属性探测接口
主要用途是来自动探测硬件设备的。
6. X重叠接口
X意 味X-Window,主要是绘图用。
5.4 时钟
GST中使用时间的原因是:
l 有些单元提供了时钟,要是管道中没有时钟的话,就会用默认的系统时钟
l 有些单元根据时钟干活(clock slaves)
GST中时间有好几种:
l 时钟时间,就是普通时间,一直增加的
l 基础时间:其实就是开始时间
l 运行时间:播放的时间,包括重播,回播种种之和
l 流时间:这个可能真的是一个单次播放的时间,例如一次重播,一次完整播放等
1. 时钟提供者
为何存在这个?因为有些视音频文件必须按照媒体自己的时间来走,而不是系统的时间频率。
2. 时钟使用者
管道会有一个时钟,然后给其他 时钟使用者使用,时钟使用者应该确保回放的东西跟得上时钟。一般是要等待一个时间,用gst_clock_id_wait函数,或者丢几帧数据。
参考插件编写指南吧。
这个东西不知道是干嘛的。manual上说是在流时间里调整gobject的属性。
必须单独包含gstcontroller库和头文件。
而且还得初始化。
那怎么使用呢?
l 1 先 选择需要操作的参数,gst_object_control_properties,得到一个controller对象
l 2 通 过该对象,设置插值模式,用来计算中间态的值。
l 3 最 后设置控制点,这是一个时间戳值,当时间到了,这个值就其激活。
还是不明白有啥用。
使用队列单元?恩,内部应该就是一个线程安全的队列。
GST通过不同的队列单元,将管道分为不同的组。
线程调度如何做?有push和pull模式两种。如果单元支持随机seek,…
寥寥数语,怎么能说清楚呢?
就是想自动完成一些加载插件(生成合适单元)的工作,通过比较匹配视音频格式信息来完成。
如何匹配?用什么来描述匹配项呢?
1. MIME类型
这个是用来描述媒体信息的。
2. 如何工作
一般来说,一个管道刚开始的时 候并不知道一个文件的MIME类型。 所以GST使用类型查找来探测MIME,这个typefinding是管道的一个组成部分,它从 文件中读足够的数据直到它能探测为止。
怎么说呢?读一点数据给所有的插件(注册 了支持typefind的插件),如果有哪个插件支持,则加载到管道中。
注意:这里谈的都是自动加载的,如果手动 加载的话,应该事先就知道了。
插件如何实现?见manual吧。其实就是调用插件的一个特殊函数,判断是不是自己能支持的。
5.8 管道的高级管理就是一些对其中传递的buffer进行中途监控的作用,难度相对比较大,等看完插件编写再说。
插件编写更实际点应该,现在看的都是云里 雾里。
六 GST高 级接口
6.1 高级播放接口介绍两个高级点的播放接口,playbin和decodebin。