Chinaunix首页 | 论坛 | 博客
  • 博客访问: 453927
  • 博文数量: 73
  • 博客积分: 1170
  • 博客等级: 少尉
  • 技术积分: 720
  • 用 户 组: 普通用户
  • 注册时间: 2012-02-20 15:48
文章分类

全部博文(73)

文章存档

2013年(9)

2012年(64)

我的朋友

分类: 嵌入式

2012-11-26 18:04:15

按照“武林秘籍”方法,我尝试构建自己的建议的语音命令控制系统,利用这个过程了解一下SPHINX。然而,在训练自己的声学模型时候,完全无法训练成功。或者说,按照那种方式,训练模型的操作根本没有开始:其数据显示如下:

MODULE: 00 verify training files
O.S. is case sensitive ("A" != "a").
Phones will be treated as case sensitive.
    Phase 1: DICT - Checking to see if the dict and filler dict agrees with the phonelist file.
        Found 8 words using 16 phones
    Phase 2: DICT - Checking to make sure there are not duplicate entries in the dictionary
    Phase 3: CTL - Check general format; utterance length (must be positive); files exist
    Phase 4: CTL - Checking number of lines in the transcript should match lines in control file
    Phase 5: CTL - Determine amount of training data, see if n_tied_states seems reasonable.
        Estimated Total Hours Training: 0.00230277777777778
        This is a small amount of data, no comment at this time
    Phase 6: TRANSCRIPT - Checking that all the words in the transcript are in the dictionary
        Words in dictionary: 5
        Words in filler dictionary: 3
    Phase 7: TRANSCRIPT - Checking that all the phones in the transcript are in the phonelist, and all phones in the phonelist appear at least once
MODULE: 01 Train LDA transformation
Skipped (set $CFG_LDA_MLLT = 'yes' to enable)
MODULE: 02 Train MLLT transformation
Skipped (set $CFG_LDA_MLLT = 'yes' to enable)
MODULE: 05 Vector Quantization
Skipped for continuous models
MODULE: 10 Training Context Independent models for forced alignment and VTLN
Skipped:  $ST::CFG_FORCEDALIGN set to 'no' in sphinx_train.cfg
Skipped:  $ST::CFG_VTLN set to 'no' in sphinx_train.cfg
MODULE: 11 Force-aligning transcripts
Skipped:  $ST::CFG_FORCEDALIGN set to 'no' in sphinx_train.cfg
MODULE: 12 Force-aligning data for VTLN
Skipped:  $ST::CFG_VTLN set to 'no' in sphinx_train.cfg
MODULE: 20 Training Context Independent models
    Phase 1: Cleaning up directories:
    accumulator...logs...qmanager...models...
    Phase 2: Flat initialize
    Phase 3: Forward-Backward
        Baum welch starting for 1 Gaussian(s), iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
        Current Overall Likelihood Per Frame = -2.70601326899879
        Baum welch starting for 1 Gaussian(s), iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 5.81870808202654
        Convergence Ratio = 8.52472135102533
        Baum welch starting for 1 Gaussian(s), iteration: 3 (1 of 1)
        0%
        Normalization for iteration: 3
        Current Overall Likelihood Per Frame = 12.7354402895054
        Convergence Ratio = 6.91673220747889
        Baum welch starting for 1 Gaussian(s), iteration: 4 (1 of 1)
        0%
        Normalization for iteration: 4
        Current Overall Likelihood Per Frame = 16.0007961399276
        Convergence Ratio = 3.26535585042222
        Baum welch starting for 1 Gaussian(s), iteration: 5 (1 of 1)
        0%
        Normalization for iteration: 5
        Current Overall Likelihood Per Frame = 16.3007720144753
        Convergence Ratio = 0.29997587454767
        Baum welch starting for 1 Gaussian(s), iteration: 6 (1 of 1)
        0%
        Normalization for iteration: 6
        Current Overall Likelihood Per Frame = 16.3483956574186
        Training completed after 6 iterations
MODULE: 30 Training Context Dependent models
    Phase 1: Cleaning up directories:
    accumulator...logs...qmanager...
    Phase 2: Initialization
    Phase 3: Forward-Backward
        Baum welch starting for iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
        Current Overall Likelihood Per Frame = 16.3717370325694
        Baum welch starting for iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 17.507056694813
        Training completed after 2 iterations
MODULE: 40 Build Trees
    Phase 1: Cleaning up old log files...
    Phase 2: Make Questions
    Phase 3: Tree building
        Processing each phone with each state
        H 0
        H 1
        H 2
        IAN 0
        IAN 1
        IAN 2
        IB 0
        IB 1
        IB 2
        IN 0
        IN 1
        IN 2
        ING 0
        ING 1
        ING 2
        J 0
        J 1
        J 2
        OU 0
        OU 1
        OU 2
        Q 0
        Q 1
        Q 2
        Skipping SIL
        T 0
        T 1
        T 2
        UAN 0
        UAN 1
        UAN 2
        UI 0
        UI 1
        UI 2
        UO 0
        UO 1
        UO 2
        Y 0
        Y 1
        Y 2
        Z 0
        Z 1
        Z 2
        ZH 0
        ZH 1
        ZH 2
MODULE: 45 Prune Trees
    Phase 1: Tree Pruning
WARNING: This step had 0 ERROR messages and 1 WARNING messages.  Please check the log file for details.
    Phase 2: State Tying
MODULE: 50 Training Context dependent models
    Phase 1: Cleaning up directories:
    accumulator...logs...qmanager...
    Phase 2: Copy CI to CD initialize
    Phase 3: Forward-Backward
        Baum welch starting for 1 Gaussian(s), iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
This step had 132 ERROR messages and 0 WARNING messages.  Please check the log file for details.
        Current Overall Likelihood Per Frame = 16.3717370325694
        Baum welch starting for 1 Gaussian(s), iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 18.1674185765983
        Convergence Ratio = 1.79568154402891
        Baum welch starting for 1 Gaussian(s), iteration: 3 (1 of 1)
        0%
        Normalization for iteration: 3
        Current Overall Likelihood Per Frame = 18.1774788902292
        Split Gaussians, increase by 1
        Current Overall Likelihood Per Frame = 18.1774788902292
        Convergence Ratio = 0.0100603136308912
        Baum welch starting for 2 Gaussian(s), iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
This step had 264 ERROR messages and 0 WARNING messages.  Please check the log file for details.
        Current Overall Likelihood Per Frame = 17.7069481302774
        Baum welch starting for 2 Gaussian(s), iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 20.5196019300362
        Convergence Ratio = 2.81265379975879
        Baum welch starting for 2 Gaussian(s), iteration: 3 (1 of 1)
        0%
        Normalization for iteration: 3
        Current Overall Likelihood Per Frame = 23.2946200241255
        Convergence Ratio = 2.77501809408925
        Baum welch starting for 2 Gaussian(s), iteration: 4 (1 of 1)
        0%
        Normalization for iteration: 4
        Current Overall Likelihood Per Frame = 25.648902291918
        Convergence Ratio = 2.35428226779247
        Baum welch starting for 2 Gaussian(s), iteration: 5 (1 of 1)
        0%
        Normalization for iteration: 5
        Current Overall Likelihood Per Frame = 26.339312424608
        Convergence Ratio = 0.690410132689962
        Baum welch starting for 2 Gaussian(s), iteration: 6 (1 of 1)
        0%
        Normalization for iteration: 6
        Current Overall Likelihood Per Frame = 26.4127744270205
        Split Gaussians, increase by 2
        Current Overall Likelihood Per Frame = 26.4127744270205
        Convergence Ratio = 0.073462002412505
        Baum welch starting for 4 Gaussian(s), iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
This step had 1635 ERROR messages and 0 WARNING messages.  Please check the log file for details.
        Current Overall Likelihood Per Frame = 25.9812545235223
        Baum welch starting for 4 Gaussian(s), iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 29.3810373944511
        Convergence Ratio = 3.39978287092885
        Baum welch starting for 4 Gaussian(s), iteration: 3 (1 of 1)
        0%
        Normalization for iteration: 3
        Current Overall Likelihood Per Frame = 33.7967671893848
        Convergence Ratio = 4.4157297949337
        Baum welch starting for 4 Gaussian(s), iteration: 4 (1 of 1)
        0%
        Normalization for iteration: 4
        Current Overall Likelihood Per Frame = 39.2286248492159
        Convergence Ratio = 5.43185765983112
        Baum welch starting for 4 Gaussian(s), iteration: 5 (1 of 1)
        0%
        Normalization for iteration: 5
        Current Overall Likelihood Per Frame = 39.9667068757539
        Convergence Ratio = 0.738082026538024
        Baum welch starting for 4 Gaussian(s), iteration: 6 (1 of 1)
        0%
        Normalization for iteration: 6
        Current Overall Likelihood Per Frame = 40.0017852834741
        Split Gaussians, increase by 4
        Current Overall Likelihood Per Frame = 40.0017852834741
        Convergence Ratio = 0.0350784077201709
        Baum welch starting for 8 Gaussian(s), iteration: 1 (1 of 1)
        0%
        Normalization for iteration: 1
This step had 6941 ERROR messages and 0 WARNING messages.  Please check the log file for details.
        Current Overall Likelihood Per Frame = 39.5515681544029
        Baum welch starting for 8 Gaussian(s), iteration: 2 (1 of 1)
        0%
        Normalization for iteration: 2
        Current Overall Likelihood Per Frame = 43.9104342581423
        Convergence Ratio = 4.35886610373944
        Baum welch starting for 8 Gaussian(s), iteration: 3 (1 of 1)
        0%
        Normalization for iteration: 3
        Current Overall Likelihood Per Frame = 50.497189384801
        Convergence Ratio = 6.58675512665866
        Baum welch starting for 8 Gaussian(s), iteration: 4 (1 of 1)
        0%
        Normalization for iteration: 4
        Current Overall Likelihood Per Frame = 62.2500844390832
        Convergence Ratio = 11.7528950542822
        Baum welch starting for 8 Gaussian(s), iteration: 5 (1 of 1)
        0%
        Normalization for iteration: 5
        Current Overall Likelihood Per Frame = 63.5334861278649
        Convergence Ratio = 1.28340168878169
        Baum welch starting for 8 Gaussian(s), iteration: 6 (1 of 1)
        0%
        Normalization for iteration: 6
        Current Overall Likelihood Per Frame = 63.6126658624849
        Split Gaussians, increase by 0
Training for 8 Gaussian(s) completed after 6 iterations
MODULE: 60 Lattice Generation
Skipped:  $ST::CFG_MMIE set to 'no' in sphinx_train.cfg
MODULE: 61 Lattice Pruning
Skipped:  $ST::CFG_MMIE set to 'no' in sphinx_train.cfg
MODULE: 62 Lattice Format Conversion
Skipped:  $ST::CFG_MMIE set to 'no' in sphinx_train.cfg
MODULE: 65 MMIE Training
Skipped:  $ST::CFG_MMIE set to 'no' in sphinx_train.cfg
MODULE: 90 deleted interpolation
Skipped for continuous models


  这个问题纠结了很久,从0%可以看出,训练根本就没有启动,也查看了SPHINX的官方指导:。仍然不能的到解决。不过最终发现了问题所在:训练数据不足。官方虽然明确“1 hour of recording for command and control for single speaker”,但是我看“武林秘籍”作者既然可以训练出来,那么这里数据太少应该不适问题,故没有重视。但是经过N天的折腾之后,依然毫无改善,就去尝试增加训练数据,看看结果,没想到竟然真的是这里的问题。

  我的训练数据离1hour还很远,只有“Estimated Total Hours Training: 0.0633277777777778”,但是相对于每个命令只录制一遍,有了相当大的改善(至少声学模型训练可以成功,而不是满天的ERROR)。之后将尝试继续添加训练数据,看看效果能否继续改善。

  对于:Warning: Could not find Mic element这个问题,由于我是使用的Ubuntu的Wubi版,不知道和这个有没有关系,直接采取忽略的做法,原因当然是我说话,它能:

READY....
Listening...
Recording is stopped, start recording with ad_start_rec。

  最终结果还不是很理想,“前进”偶尔会识别为“停止”,“右转”基本都识别为“停止”,估计原因是录制的音频不是很自然。之后将尝试添加更多训练数据以期改善。不过毕竟有了结果,这还是令人欣慰的。

  运行结果如下:

$:pocketsphinx_continuous -hmm my_db.cd_cont_100 -lm my_db.lm.DMP -dict my_db.dic

INFO: cmd_ln.c(691): Parsing command line:
pocketsphinx_continuous \
    -hmm my_db.cd_cont_100 \
    -lm my_db.lm.DMP \
    -dict my_db.dic

Current configuration:
[NAME]        [DEFLT]        [VALUE]
-adcdev                
-agc        none        none
-agcthresh    2.0        2.000000e+00
-alpha        0.97        9.700000e-01
-argfile            
-ascale        20.0        2.000000e+01
-aw        1        1
-backtrace    no        no
-beam        1e-48        1.000000e-48
-bestpath    yes        yes
-bestpathlw    9.5        9.500000e+00
-bghist        no        no
-ceplen        13        13
-cmn        current        current
-cmninit    8.0        8.0
-compallsen    no        no
-debug                0
-dict                my_db.dic
-dictcase    no        no
-dither        no        no
-doublebw    no        no
-ds        1        1
-fdict                
-feat        1s_c_d_dd    1s_c_d_dd
-featparams            
-fillprob    1e-8        1.000000e-08
-frate        100        100
-fsg                
-fsgusealtpron    yes        yes
-fsgusefiller    yes        yes
-fwdflat    yes        yes
-fwdflatbeam    1e-64        1.000000e-64
-fwdflatefwid    4        4
-fwdflatlw    8.5        8.500000e+00
-fwdflatsfwin    25        25
-fwdflatwbeam    7e-29        7.000000e-29
-fwdtree    yes        yes
-hmm                my_db.cd_cont_100
-infile                
-input_endian    little        little
-jsgf                
-kdmaxbbi    -1        -1
-kdmaxdepth    0        0
-kdtree                
-latsize    5000        5000
-lda                
-ldadim        0        0
-lextreedump    0        0
-lifter        0        0
-lm                my_db.lm.DMP
-lmctl                
-lmname        default        default
-logbase    1.0001        1.000100e+00
-logfn                
-logspec    no        no
-lowerf        133.33334    1.333333e+02
-lpbeam        1e-40        1.000000e-40
-lponlybeam    7e-29        7.000000e-29
-lw        6.5        6.500000e+00
-maxhmmpf    -1        -1
-maxnewoov    20        20
-maxwpf        -1        -1
-mdef                
-mean                
-mfclogdir            
-min_endfr    0        0
-mixw                
-mixwfloor    0.0000001    1.000000e-07
-mllr                
-mmap        yes        yes
-ncep        13        13
-nfft        512        512
-nfilt        40        40
-nwpen        1.0        1.000000e+00
-pbeam        1e-48        1.000000e-48
-pip        1.0        1.000000e+00
-pl_beam    1e-10        1.000000e-10
-pl_pbeam    1e-5        1.000000e-05
-pl_window    0        0
-rawlogdir            
-remove_dc    no        no
-round_filters    yes        yes
-samprate    16000        1.600000e+04
-seed        -1        -1
-sendump            
-senlogdir            
-senmgau            
-silprob    0.005        5.000000e-03
-smoothspec    no        no
-svspec                
-time        no        no
-tmat                
-tmatfloor    0.0001        1.000000e-04
-topn        4        4
-topn_beam    0        0
-toprule            
-transform    legacy        legacy
-unit_area    yes        yes
-upperf        6855.4976    6.855498e+03
-usewdphones    no        no
-uw        1.0        1.000000e+00
-var                
-varfloor    0.0001        1.000000e-04
-varnorm    no        no
-verbose    no        no
-warp_params            
-warp_type    inverse_linear    inverse_linear
-wbeam        7e-29        7.000000e-29
-wip        0.65        6.500000e-01
-wlen        0.025625    2.562500e-02

INFO: cmd_ln.c(691): Parsing command line:
\
    -alpha 0.97 \
    -doublebw no \
    -nfilt 40 \
    -ncep 13 \
    -lowerf 133.33334 \
    -upperf 6855.4976 \
    -nfft 512 \
    -wlen 0.0256 \
    -transform legacy \
    -feat 1s_c_d_dd \
    -agc none \
    -cmn current \
    -varnorm no

Current configuration:
[NAME]        [DEFLT]        [VALUE]
-agc        none        none
-agcthresh    2.0        2.000000e+00
-alpha        0.97        9.700000e-01
-ceplen        13        13
-cmn        current        current
-cmninit    8.0        8.0
-dither        no        no
-doublebw    no        no
-feat        1s_c_d_dd    1s_c_d_dd
-frate        100        100
-input_endian    little        little
-lda                
-ldadim        0        0
-lifter        0        0
-logspec    no        no
-lowerf        133.33334    1.333333e+02
-ncep        13        13
-nfft        512        512
-nfilt        40        40
-remove_dc    no        no
-round_filters    yes        yes
-samprate    16000        1.600000e+04
-seed        -1        -1
-smoothspec    no        no
-svspec                
-transform    legacy        legacy
-unit_area    yes        yes
-upperf        6855.4976    6.855498e+03
-varnorm    no        no
-verbose    no        no
-warp_params            
-warp_type    inverse_linear    inverse_linear
-wlen        0.025625    2.560000e-02

INFO: acmod.c(242): Parsed model-specific feature parameters from my_db.cd_cont_100/feat.params
INFO: feat.c(684): Initializing feature stream to type: '1s_c_d_dd', ceplen=13, CMN='current', VARNORM='no', AGC='none'
INFO: cmn.c(142): mean[0]= 12.00, mean[1..12]= 0.0
INFO: mdef.c(520): Reading model definition: my_db.cd_cont_100/mdef
INFO: bin_mdef.c(173): Allocating 166 * 8 bytes (1 KiB) for CD tree
INFO: tmat.c(205): Reading HMM transition probability matrices: my_db.cd_cont_100/transition_matrices
INFO: acmod.c(117): Attempting to use SCHMM computation module
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/means
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/variances
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(354): 412 variance values floored
INFO: acmod.c(119): Attempting to use PTHMM computation module
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/means
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/variances
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(354): 412 variance values floored
INFO: ptm_mgau.c(804): Number of codebooks doesn't match number of ciphones, doesn't look like PTM: 105 16
INFO: acmod.c(121): Falling back to general multi-stream GMM computation
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/means
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(198): Reading mixture gaussian parameter: my_db.cd_cont_100/variances
INFO: ms_gauden.c(292): 105 codebook, 1 feature, size:
INFO: ms_gauden.c(294):  8x39
INFO: ms_gauden.c(354): 412 variance values floored
INFO: ms_senone.c(160): Reading senone mixture weights: my_db.cd_cont_100/mixture_weights
INFO: ms_senone.c(211): Truncating senone logs3(pdf) values by 10 bits
INFO: ms_senone.c(218): Not transposing mixture weights in memory
INFO: ms_senone.c(277): Read mixture weights for 105 senones: 1 features x 8 codewords
INFO: ms_senone.c(331): Mapping senones to individual codebooks
INFO: ms_mgau.c(122): The value of topn: 4
INFO: dict.c(306): Allocating 4104 * 20 bytes (80 KiB) for word entries
INFO: dict.c(321): Reading main dictionary: my_db.dic
INFO: dict.c(212): Allocated 0 KiB for strings, 0 KiB for phones
INFO: dict.c(324): 5 words read
INFO: dict.c(330): Reading filler dictionary: my_db.cd_cont_100/noisedict
INFO: dict.c(212): Allocated 0 KiB for strings, 0 KiB for phones
INFO: dict.c(333): 3 words read
INFO: dict2pid.c(396): Building PID tables for dictionary
INFO: dict2pid.c(404): Allocating 16^3 * 2 bytes (8 KiB) for word-initial triphones
INFO: dict2pid.c(131): Allocated 3136 bytes (3 KiB) for word-final triphones
INFO: dict2pid.c(195): Allocated 3136 bytes (3 KiB) for single-phone word triphones
INFO: ngram_model_arpa.c(77): No \data\ mark in LM file
INFO: ngram_model_dmp.c(142): Will use memory-mapped I/O for LM file
INFO: ngram_model_dmp.c(196): ngrams 1=7, 2=10, 3=13
INFO: ngram_model_dmp.c(242):        7 = LM.unigrams(+trailer) read
INFO: ngram_model_dmp.c(291):       10 = LM.bigrams(+trailer) read
INFO: ngram_model_dmp.c(317):       13 = LM.trigrams read
INFO: ngram_model_dmp.c(342):        4 = LM.prob2 entries read
INFO: ngram_model_dmp.c(362):        5 = LM.bo_wt2 entries read
INFO: ngram_model_dmp.c(382):        3 = LM.prob3 entries read
INFO: ngram_model_dmp.c(410):        1 = LM.tseg_base entries read
INFO: ngram_model_dmp.c(466):        7 = ascii word strings read
INFO: ngram_search_fwdtree.c(99): 5 unique initial diphones
INFO: ngram_search_fwdtree.c(147): 0 root, 0 non-root channels, 4 single-phone words
INFO: ngram_search_fwdtree.c(186): Creating search tree
INFO: ngram_search_fwdtree.c(191): before: 0 root, 0 non-root channels, 4 single-phone words
INFO: ngram_search_fwdtree.c(326): after: max nonroot chan increased to 138
INFO: ngram_search_fwdtree.c(338): after: 5 root, 10 non-root channels, 3 single-phone words
INFO: ngram_search_fwdflat.c(156): fwdflat: min_ef_width = 4, max_sf_win = 25
INFO: continuous.c(367): pocketsphinx_continuous COMPILED ON: Jul 29 2012, AT: 18:16:08

Warning: Could not find Mic element
READY....
Listening...
Recording is stopped, start recording with ad_start_rec
Stopped listening, please wait...
INFO: cmn_prior.c(121): cmn_prior_update: from <  8.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 >
INFO: cmn_prior.c(139): cmn_prior_update: to   <  9.71  1.10 -0.35 -0.07 -0.45 -0.21 -0.27  0.05 -0.21 -0.26 -0.14 -0.11 -0.06 >
INFO: ngram_search_fwdtree.c(1549):       88 words recognized (1/fr)
INFO: ngram_search_fwdtree.c(1551):     1416 senones evaluated (16/fr)
INFO: ngram_search_fwdtree.c(1553):      548 channels searched (6/fr), 203 1st, 171 last
INFO: ngram_search_fwdtree.c(1557):      171 words for which last channels evaluated (1/fr)
INFO: ngram_search_fwdtree.c(1560):       38 candidate words for entering last phone (0/fr)
INFO: ngram_search_fwdtree.c(1562): fwdtree 0.01 CPU 0.014 xRT
INFO: ngram_search_fwdtree.c(1565): fwdtree 1.40 wall 1.632 xRT
INFO: ngram_search_fwdflat.c(305): Utterance vocabulary contains 3 words
INFO: ngram_search_fwdflat.c(940):       68 words recognized (1/fr)
INFO: ngram_search_fwdflat.c(942):      912 senones evaluated (11/fr)
INFO: ngram_search_fwdflat.c(944):      384 channels searched (4/fr)
INFO: ngram_search_fwdflat.c(946):      209 words searched (2/fr)
INFO: ngram_search_fwdflat.c(948):      101 word transitions (1/fr)
INFO: ngram_search_fwdflat.c(951): fwdflat -0.00 CPU -0.000 xRT
INFO: ngram_search_fwdflat.c(954): fwdflat 0.00 wall 0.003 xRT
INFO: ngram_search.c(1253): lattice start node .0 end node .83
INFO: ngram_search.c(1281): Eliminated 0 nodes before end node
INFO: ngram_search.c(1386): Lattice has 10 nodes, 8 links
INFO: ps_lattice.c(1352): Normalizer P(O) = alpha(:83:84) = -258409
INFO: ps_lattice.c(1390): Joint P(O,S) = -258409 P(S|O) = 0
INFO: ngram_search.c(875): bestpath 0.00 CPU 0.000 xRT
INFO: ngram_search.c(878): bestpath 0.00 wall 0.000 xRT
000000000: 停止
READY....
Listening...
Recording is stopped, start recording with ad_start_rec
Stopped listening, please wait...
INFO: cmn_prior.c(121): cmn_prior_update: from <  9.71  1.10 -0.35 -0.07 -0.45 -0.21 -0.27  0.05 -0.21 -0.26 -0.14 -0.11 -0.06 >
INFO: cmn_prior.c(139): cmn_prior_update: to   <  9.75  1.06 -0.31 -0.03 -0.41 -0.20 -0.24  0.06 -0.20 -0.28 -0.13 -0.14 -0.08 >
INFO: ngram_search_fwdtree.c(1549):      154 words recognized (2/fr)
INFO: ngram_search_fwdtree.c(1551):     1848 senones evaluated (23/fr)
INFO: ngram_search_fwdtree.c(1553):      718 channels searched (8/fr), 309 1st, 193 last
INFO: ngram_search_fwdtree.c(1557):      193 words for which last channels evaluated (2/fr)
INFO: ngram_search_fwdtree.c(1560):        8 candidate words for entering last phone (0/fr)
INFO: ngram_search_fwdtree.c(1562): fwdtree 0.02 CPU 0.020 xRT
INFO: ngram_search_fwdtree.c(1565): fwdtree 2.88 wall 3.601 xRT
INFO: ngram_search_fwdflat.c(305): Utterance vocabulary contains 3 words
INFO: ngram_search_fwdflat.c(940):       87 words recognized (1/fr)
INFO: ngram_search_fwdflat.c(942):      933 senones evaluated (12/fr)
INFO: ngram_search_fwdflat.c(944):      427 channels searched (5/fr)
INFO: ngram_search_fwdflat.c(946):      256 words searched (3/fr)
INFO: ngram_search_fwdflat.c(948):      120 word transitions (1/fr)
INFO: ngram_search_fwdflat.c(951): fwdflat 0.00 CPU 0.000 xRT
INFO: ngram_search_fwdflat.c(954): fwdflat 0.00 wall 0.003 xRT
INFO: ngram_search.c(1253): lattice start node .0 end node .71
INFO: ngram_search.c(1281): Eliminated 0 nodes before end node
INFO: ngram_search.c(1386): Lattice has 12 nodes, 9 links
INFO: ps_lattice.c(1352): Normalizer P(O) = alpha(:71:78) = -227997
INFO: ps_lattice.c(1390): Joint P(O,S) = -227997 P(S|O) = 0
INFO: ngram_search.c(875): bestpath -0.00 CPU -0.000 xRT
INFO: ngram_search.c(878): bestpath 0.00 wall 0.000 xRT
000000001: 停止
READY....
Listening...
Recording is stopped, start recording with ad_start_rec
Stopped listening, please wait...
INFO: cmn_prior.c(121): cmn_prior_update: from <  9.75  1.06 -0.31 -0.03 -0.41 -0.20 -0.24  0.06 -0.20 -0.28 -0.13 -0.14 -0.08 >
INFO: cmn_prior.c(139): cmn_prior_update: to   <  9.84  1.08 -0.32 -0.03 -0.43 -0.22 -0.24  0.04 -0.20 -0.27 -0.15 -0.13 -0.09 >
INFO: ngram_search_fwdtree.c(1549):      137 words recognized (1/fr)
INFO: ngram_search_fwdtree.c(1551):     2142 senones evaluated (23/fr)
INFO: ngram_search_fwdtree.c(1553):      801 channels searched (8/fr), 313 1st, 228 last
INFO: ngram_search_fwdtree.c(1557):      228 words for which last channels evaluated (2/fr)
INFO: ngram_search_fwdtree.c(1560):       56 candidate words for entering last phone (0/fr)
INFO: ngram_search_fwdtree.c(1562): fwdtree 0.02 CPU 0.017 xRT
INFO: ngram_search_fwdtree.c(1565): fwdtree 1.38 wall 1.487 xRT
INFO: ngram_search_fwdflat.c(305): Utterance vocabulary contains 4 words
INFO: ngram_search_fwdflat.c(940):      108 words recognized (1/fr)
INFO: ngram_search_fwdflat.c(942):     1455 senones evaluated (16/fr)
INFO: ngram_search_fwdflat.c(944):      590 channels searched (6/fr)
INFO: ngram_search_fwdflat.c(946):      351 words searched (3/fr)
INFO: ngram_search_fwdflat.c(948):      154 word transitions (1/fr)
INFO: ngram_search_fwdflat.c(951): fwdflat 0.00 CPU 0.000 xRT
INFO: ngram_search_fwdflat.c(954): fwdflat 0.00 wall 0.004 xRT
INFO: ngram_search.c(1253): lattice start node .0 end node .90
INFO: ngram_search.c(1281): Eliminated 0 nodes before end node
INFO: ngram_search.c(1386): Lattice has 13 nodes, 12 links
INFO: ps_lattice.c(1352): Normalizer P(O) = alpha(:90:91) = -208439
INFO: ps_lattice.c(1390): Joint P(O,S) = -208439 P(S|O) = 0
INFO: ngram_search.c(875): bestpath -0.00 CPU -0.000 xRT
INFO: ngram_search.c(878): bestpath 0.00 wall 0.000 xRT
000000002: 左转
READY....

原文地址:http://blog.csdn.net/longer44/article/details/7805025

阅读(4125) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~